K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4x+3y-xy=1

=>\(4x-xy+3y=1\)

=>\(x\left(4-y\right)+3y-12=-11\)

=>-x(y-4)+3(y-4)=-11

=>(-x+3)(y-4)=-11

=>(x-3)(y-4)=11

=>\(\left(x-3;y-4\right)\in\left\{\left(1;11\right);\left(11;1\right);\left(-1;-11\right);\left(-11;-1\right)\right\}\)

=>\(\left(x;y\right)\in\left\{\left(4;15\right);\left(14;5\right);\left(2;-7\right);\left(-8;3\right)\right\}\)

30 tháng 3 2017

Sửa thành tìm GTLN nhé !

Với x,y,z>0 chia 2 vế của \(xy+yz+xz=xyz\) cho \(xyz\) ta có :

\(xy+yz+xz=xyz\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)

Áp dụng BĐT Cauchy-Schwarz ta có: 

\(\frac{1}{4x+3y+z}\le\frac{1}{64}\left(\frac{4}{x}+\frac{3}{y}+\frac{1}{z}\right)\). Tương tự cho 2 BĐT kia:

\(\frac{1}{x+4y+3z}\le\frac{1}{64}\left(\frac{1}{x}+\frac{4}{y}+\frac{3}{z}\right);\frac{1}{3x+y+4z}\le\frac{1}{64}\left(\frac{3}{x}+\frac{1}{y}+\frac{4}{z}\right)\)

Cộng theo vế 3 BĐT trên ta có: 

\(M\leΣ\frac{1}{64}\left(\frac{4}{x}+\frac{3}{y}+\frac{1}{z}\right)=Σ\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{8}\)

Đẳng thức xảy ra khi \(x=y=z=3\)

2 tháng 8 2021

Ta có:

D=2x2+3y2+4xy−8x−2y+18C=2x2+3y2+4xy−8x−2y+18

D=2(x2+2xy+y2)+y2−8x−2y+18C=2(x2+2xy+y2)+y2−8x−2y+18

D=2[(x+y)2−4(x+y)+4]+(y2+6y+9)+1C=2[(x+y)2−4(x+y)+4]+(y2+6y+9)+1

D=2(x+y−2)2+(y+3)2+1≥1C=2(x+y−2)2+(y+3)2+1≥1

Dấu "=" xảy ra ⇔x+y=2⇔x+y=2và y=−3y=−3

Hay x = 5 , y = -3

Đc chx bạn

2 tháng 8 2021

4 tháng 3 2017

\(x^2+y^2+z^2-xy-3y-2z+4=0\)không có  thừ số x à.

(\(\left(x-\frac{y}{2}\right)^2+3\left(\frac{y}{2}-1\right)^2+\left(z-1\right)^2=0\)

y=2