K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2019

Câu a thì mình chịu rồi @@ sorry nha

Còn câu b, bạn thấy rằng x2-3x+2-x2+x+1+2x-3=0 đúng không nào?

Nếu như bạn còn nhớ công thức a+b+c=0 <=> a3+b3+c3=3abc

Thì chắc chắn là bạn sẽ giải ra được bài này thôi. Đáp số là x=1 hoặc x=2 hoặc x=3/2 bạn nhé.

Chúc bạn giải được câu b này. Nếu như vẫn còn thắc mắc thì trả lời lại cho mình để mình gừi bài giải chi tiết nhé, do giờ mình đang bận @@

TL

XY=60

Học tốt

Sai mik sorry

12 tháng 11 2021

xem có sai đề ko

12 tháng 5 2016

cái pt thứ 2 bạn nhân 2 vế vs x

Sau đó chuyển hết sang 1 vế,,,dùng máy băm nghiệm

12 tháng 5 2016

x4+x3-6x3-6x2+6x2+6x+4x+4=0

7 tháng 6 2018

11x^2-490x-3000=0

<=> 11x^2+60x-550x-3000=0

<=> 11x(x-50)-60(x-50)=0

<=> (x-50)(11x-60)=0

<=> x=50 hoặc x=60/11

2 tháng 3 2022

\(\left(-5\right)^2-4.\left(-3\right)\left(-2\right)=25-24=1>0\)

Suy ra pt luôn có 2 nghiệm phân biệt

Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-5}{3}\\x_1x_2=\dfrac{2}{3}\end{matrix}\right.\)

\(M=x_1+\dfrac{1}{x_1}+\dfrac{1}{x_2}+x_2\\ =\left(x_1+x_2\right)+\dfrac{x_1+x_2}{x_1x_2}\\ =\dfrac{-5}{3}+\dfrac{-5}{3}:\dfrac{2}{3}\\ =\dfrac{-5}{3}-\dfrac{5}{2}\\ =\dfrac{-25}{6}\)

-3x2-5x-2=0

Ta có :-3-(-5)-2=0

=>Phương trình có 2 nghiệm \(\hept{\begin{cases}x_1=-1\\x_2=\frac{-5}{3}\end{cases}}\)

Thay x1;x2 vào M ta được:

M=(-1)+\(\frac{1}{-1}\)+\(\frac{1}{\frac{-5}{3}}\)+\(\frac{-5}{3}\)

=(-1)+(-1)+\(-\frac{3}{5}+-\frac{5}{3}\)

=\(-\frac{64}{15}\)

<=> (x2 - 2x)2 + x2 - 2x + 1 - 13 = 0

<=> (x2 - 2x)2 + x2 - 2x - 12 = 0

Đặt t = x2 - 2x

Khi đó ta có pt: t2 + t - 12 = 0

<=> t2 + 4t - 3t - 12 = 0

<=> (t - 3)(t + 4) = 0 <=> \(\orbr{\begin{cases}t=3\\t=-4\end{cases}}\)

*Với t = 3 ta có: x2 - 2x = 3

<=> x2 - 2x - 3 = 0

<=> (x - 3)(x + 1) = 0 <=> \(\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)

*Với t = -4 ta có: x2 - 2x = -4

<=> x2 - 2x + 4 = 0

<=> (x - 1)2 + 3 = 0 (Vô nghiệm)

Vậy S = {3;-1}

10 tháng 3 2020

(x2-2x)+ (x-1)- 13 = 0

<=> x^4 - 4x^3 + 4x^2 + x^2 - 2x + 1 - 13 = 0

<=>  x^3 - 4x^3 + 5x^2 - 2x - 12 = 0

<=> x^4 + x^3 - 5x^3 - 5x^2 + 10x^2 + 10x - 12x - 12 = 0

<=>  x^3(x + 1) - 5x^2(x + 1) + 10x(x + 1) - 12(x + 1) = 0

<=>  (x^3 - 5x^2 + 10x - 12)(x + 1) = 0

<=> (x^3 - 3x^2 - 2x^2 + 6x + 4x - 12)(x + 1) = 0

<=>  [x^2(x - 3) - 2x(x - 3) + 4(x - 3)](x + 1) = 0

<=>  (x^2 - 2x + 4)(x - 3)(x + 1) = 0

có x^2 - 2x + 4 = (x - 1)^2 + 3 lớn hơn 0

<=> x - 3 = 0 hoặc x + 1 = 0

<=>  x = 3 hoặc x = -1