K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2020

Đặt \(x^2=t\left(t\ge0\right)\)

Phương trình trở thành \(-3t^2+9t+12=0\)

Ta có \(\Delta=9^2+4.3.12=225,\sqrt{\Delta}=15\)

\(\Rightarrow\orbr{\begin{cases}t=\frac{-9+15}{-6}=-1\\t=\frac{-9-15}{-6}=4\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x^2=-1\left(L\right)\\x^2=4\end{cases}}\Rightarrow x=\pm2\)

Vậy x = 2 hoặc x =- 2

13 tháng 2 2020

\(-3x^4+9x^2+12=0\)\(\Leftrightarrow-3\left(x^4-3x^2-4\right)=0\)

\(\Leftrightarrow x^4-3x^2-4=0\)\(\Leftrightarrow\left(x^4+x^2\right)-\left(4x^2+4\right)=0\)

\(\Leftrightarrow x^2\left(x^2+1\right)-4\left(x^2+1\right)=0\)\(\Leftrightarrow\left(x^2+1\right)\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x^2+1\right)\left(x+2\right)\left(x-2\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=2\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{-2;2\right\}\)

a)(x-3)-x(x-2)=0 

x=\(\frac{9}{4}\)
b)3x(2-x)+4(x-2) =0

x=2
c)(x-1)2=(49-1)16 

x=5308417
d)x3-6x2+9x=0

x=0

~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~

 ~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~

3 tháng 8 2017

Ta có ; (x - 3)2 - x(x - 2) = 0

<=> x2 - 6x + 9 - x2 + 2x = 0

<=> -4x + 9 = 0 

=> -4x = -9

=> x = \(\frac{9}{4}\)

27 tháng 1 2016

a/. x3 - 9x2 +27x - 19 = 0

<=> (x3 - 3.x2 .3 + 3.32 .x - 33) + 8 = 0

<=> (x - 3)3 + 8 = 0

<=> (x - 3 + 2) [(x - 3)- 2(x-3) +4] = 0

<=> (x -1)(x- 6x+ 9 -2x +6 +4) =0

<=> (x - 1)(x2  - 8x + 19) = 0

<=> x - 1 = 0 => x = 1

Vậy S = {1}

Xem lại đề câu b nha bạn?

c/. x3 + 1 -7x -7 =0 

<=> (x3 + 1) -7(x+1)=0

<=> (x+1)(x2-x+1) -7(x+1)=0

<=> (x+1)(x2-x+1-7)=0

<=> x + 1 = 0 hay x2 -x - 6 = 0

<=> x = -1 hay (x2 - 3x) + (2x - 6) = 0 

<=>                   x(x - 3) +2(x-3) = 0

<=>                 (x - 3)(x+2) = 0

<=> x = -1 hay x = 3 hay x = -2

Vậy S = {-1;3;-2}

27 tháng 1 2016

X3 - X2-8X2+8X+19X-19=0

<=>X2(X-1)-8X(X-1)+19(X-1)=0

<=>(X-1)(X2-8X+19)=0

vi X2-8X+19=(X-4)2+3>3

 

 

16 tháng 4 2021

a)9x2 - 3 = ( 3x + 1 )( 2x - 3 )

<=> 9x2 - 3 = 6x2 - 7x  - 3

<=> 3x2 + 7x = 0

<=> x( 3x + 7 ) = 0 

<=> x = 0 hoặc x = -7/3

b) 6x2 - 13x + 6 = 0

<=> 6x2 - 9x - 4x + 6 = 0

<=> 3x( 2x - 3 ) - 2( 2x - 3 ) = 0

<=> ( 2x - 3 )( 3x - 2 ) = 0

<=> x = 3/2 hoặc x = 2/3

c) \(\frac{3}{x-1}=\frac{3x+2}{1-x^2}-\frac{4}{x+1}\)( ĐKXĐ : x ≠ ±1 )

<=> \(\frac{3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\frac{-3x-2}{\left(x-1\right)\left(x+1\right)}-\frac{4\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\)

=> 3x + 3 = -3x - 2 - 4x + 4

<=> 10x = -1 <=> x = -1/10 (tm)

16 tháng 4 2021

a, \(9x^2-3=\left(3x+1\right)\left(2x-3\right)\Leftrightarrow9x^2-3=6x^2-9x+2x-3\)

\(\Leftrightarrow9x^2-3=6x^2-7x-3\Leftrightarrow3x^2+7x=0\Leftrightarrow x\left(3x+7\right)=0\Leftrightarrow x=0;x=-\frac{7}{3}\)

Vậy tập nghiệm của phương trình là S = { -7/3 ; 0 } 

b, \(6x^2-13x+6=0\Leftrightarrow\left(3x-2\right)\left(2x-3\right)=0\Leftrightarrow x=\frac{2}{3};x=\frac{3}{2}\)

Vậy tập nghiệm của phương trình là S = { 2/3 ; 3/2 } 

c, \(\frac{3}{x-1}=\frac{3x+2}{1-x^2}-\frac{4}{x+1}ĐK:x\ne\pm1\)

\(\Leftrightarrow\frac{3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\frac{-3x-2}{\left(x-1\right)\left(x+1\right)}-\frac{4\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\)

\(\Leftrightarrow3x+3=-3x-2-4x+4\Leftrightarrow3x+3=-7x+2\)

\(\Leftrightarrow10x=-1\Leftrightarrow x=-\frac{1}{10}\)Vậy tập nghiệm của phương trình là S = { -1/10 } 

 2x^4-9x^3+14x^2-9x+2=0 
vế trái có tổng các hệ số (2-9+14-9+2)=0 nến có 1 nghiêm x=1 
nên phân tích đc nhân tử là (x-1) 
2x^4-9x^3+14x^2-9x+2=0 <=> (x-1)(2x^3-7x^2+7x-2)=0 
<=> x=1 và 2x^3-7x^2+7x-2=0 
PT: 2x^3-7x^2+7x-2=0 cũng có tổng các hệ số (2-7+7-2)=0 nên cũng có 1 nghiệm là 1 => vế trái có thể phân tích đc nhân tử (x-1) 
2x^3-7x^2+7x-2=0 <=> (x-1)(2x^2-5x+2)=0 
<=> x=1 và 2x^2-5x+2=0 
2x^2-5x+2=0 <=> x^2 - (5/2)x + 1 =0 
<=> (x-5/4)^2 - 9/16 = 0 
<=> (x-5/4)^2 - (3/4)^2 = 0

NV
26 tháng 7 2020

Nhận thấy \(x=0\) không phải nghiệm, chia 2 vế cho \(x^2\) và gom lại:

a/

\(\Leftrightarrow x^2+\frac{4}{x^2}+2\left(x+\frac{2}{x}\right)-3=0\)

Đặt \(x+\frac{2}{x}=t\Rightarrow x^2+\frac{4}{x^2}=t^2-4\)

Pt trở thành: \(t^2-4+2t-3=0\Leftrightarrow t^2+2t-7=0\)

Tới đây bạn giải ra t rồi thế vô chỗ đặt là được (nghiệm xấu quá, làm biếng giải tiếp)

b/

\(\Leftrightarrow2\left(x^2+\frac{1}{x^2}\right)-9\left(x-\frac{1}{x}\right)+7=0\)

Đặt \(x-\frac{1}{x}=t\Rightarrow x^2+\frac{1}{x^2}=t^2+2\)

\(\Rightarrow2\left(t^2+2\right)-9t+7=0\)

\(\Leftrightarrow2t^2-9t+11=0\)

Pt vô nghiệm

26 tháng 7 2020

dạ em cảm ơn Anh nhiều ạ

28 tháng 3 2020

1) (x^2 + x)^2 - (x^2 + x) - 2 = 0

<=> x^2(x + 1)^2 - x^2 - x - 2 = 0

<=> x^4 + 2x^3 + x^2 - x^2 - x - 2 = 0

<=> x^4 + 2x^3 - x - 2 = 0

<=> x^3(x + 2) - (x + 2) = 0

<=> (x^3 - 1)(x + 2) = 0

<=> x^3 - 1 = 0 hoặc x + 2 = 0

<=> x = 1 hoặc x = -2