\(3x^2+5x-1=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2021

Phương trình có các hệ số là a = 3 ; b = 5 ; c = -1

\(\Delta=5^2-4.3.\left(-1\right)=25+12=37\)

Do \(\Delta>0\), ta áp dụng công thức nghiệm , phương trình có 2 nghiệm phân biệt :

\(x_1=\frac{-5+\sqrt{37}}{6}\)\(x_2=\frac{-5-\sqrt{37}}{6}\)

22 tháng 1 2021

Ta có: \(\Delta=5^2-4.3.\left(-1\right)=37>0\)

\(\Rightarrow\)Phương trình đã cho có 2 nghiệm phân biệt:\(x=\frac{-5\pm\sqrt{37}}{6}\)

Vậy phương trình có 2 nghiệm là: \(x=\frac{-5\pm\sqrt{37}}{6}\)

19 tháng 3 2022

a, \(\Delta=25-8=17\)>0 Vậy pt có 2 nghiệm pb 

\(x=\dfrac{5\pm\sqrt{17}}{4}\)

b, \(\Delta=16-16=0\)Vậy pt có nghiệm kép 

\(x_1=x_2=\dfrac{1}{4}\)

c, \(\Delta=1-4.2.5< 0\)Vậy pt vô nghiệm 

d, \(\Delta=4+4.24=100>0\)Vậy pt có 2 nghiệm pb 

\(x=\dfrac{-2-10}{-6}=2;x=\dfrac{-2+10}{-6}=-\dfrac{4}{3}\)

a: \(\Leftrightarrow x^2-3x+\dfrac{9}{4}=\dfrac{5}{4}\)

=>(x-3/2)2=5/4

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{3}{2}=\dfrac{\sqrt{5}}{2}\\x-\dfrac{3}{2}=-\dfrac{\sqrt{5}}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{5}+3}{2}\\x=\dfrac{-\sqrt{5}+3}{2}\end{matrix}\right.\)

b: \(x^2+\sqrt{2}x-1=0\)

nên \(x^2+2\cdot x\cdot\dfrac{\sqrt{2}}{2}+\dfrac{1}{2}=\dfrac{3}{2}\)

\(\Leftrightarrow\left(x+\dfrac{\sqrt{2}}{2}\right)^2=\dfrac{3}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{\sqrt{2}}{2}=\dfrac{\sqrt{6}}{2}\\x+\dfrac{\sqrt{2}}{2}=-\dfrac{\sqrt{6}}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{6}-\sqrt{2}}{2}\\x=\dfrac{-\sqrt{6}-\sqrt{2}}{2}\end{matrix}\right.\)

c: \(5x^2-7x+1=0\)

\(\Leftrightarrow x^2-\dfrac{7}{5}x+\dfrac{1}{5}=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{7}{10}+\dfrac{49}{100}=\dfrac{29}{100}\)

\(\Leftrightarrow\left(x-\dfrac{7}{10}\right)^2=\dfrac{29}{100}\)

hay \(x\in\left\{\dfrac{\sqrt{29}+7}{10};\dfrac{-\sqrt{29}+7}{10}\right\}\)

20 tháng 11 2017

(1)Phương trình đã cho tương đương với:
3x27x+33x25x1=x22x23x+43x2−7x+3−3x2−5x−1=x2−2−x2−3x+4
2x+43x27x+3+3x25x1=3x6x22+x23x+4⇔−2x+43x2−7x+3+3x2−5x−1=3x−6x2−2+x2−3x+4

(x2)(3x22+x23x+4+23x27x+3+3x25x1)=0⇔(x−2)(3x2−2+x2−3x+4+23x2−7x+3+3x2−5x−1)=0
Đến đây thì bạn có thể suy ra nghiệm của phương trình sau cùng là x=2x=2. Kiểm tra lại điều kiện ban đầu để kết luận nghiệm của phương trình đã cho.
(2)đk:23x723≤x≤7

Phương trình đã cho tương đương với:

3x183x2+4+x67x1+(x6)(3x2+x2)3x−183x−2+4+x−67−x−1+(x−6)(3x2+x−2)=0

(x6)(33x2+4+17x1+3x2+x2)⇔(x−6)(33x−2+4+17−x−1+3x2+x−2)=0

x=6⇔x=6

vì với 23x723≤x≤7

thì: (33x2+4+17x1+3x2+x2)(33x−2+4+17−x−1+3x2+x−2)>0

12 tháng 7 2019

Đặt: \(x^2=t\)

Sao đó giải như pt bậc 2 bình thường 

12 tháng 7 2019

cops mạng đâu thế :((

14 tháng 1 2020

a) \(x^2-6x+8=0\)

\(\Leftrightarrow\left(x-4\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=4\\x=2\end{cases}}\)

15 tháng 1 2020

a) \(x^2-7x-5=0\)

\(\Leftrightarrow x^2-2.x.\frac{7}{2}+\frac{49}{4}-\frac{49}{4}-5=0\)

\(\Leftrightarrow\left(x-\frac{7}{2}\right)^2-\frac{69}{4}=0\)

\(\Leftrightarrow\left(x-\frac{7}{2}-\frac{\sqrt{69}}{2}\right)\left(x-\frac{7}{2}+\frac{\sqrt{69}}{2}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-\frac{7}{2}-\frac{\sqrt{69}}{2}=0\\x-\frac{7}{2}+\frac{\sqrt{69}}{2}=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=\frac{7+\sqrt{69}}{2}\\x=\frac{7-\sqrt{69}}{2}\end{cases}}\)

Vậy tập hợp nghiệm\(S=\left\{\frac{7+\sqrt{69}}{2};\frac{7-\sqrt{69}}{2}\right\}\)

b) \(3x^2-5x-8=0\)

\(\Leftrightarrow3x^2+3x-8x-8=0\)

\(\Leftrightarrow3x\left(x+1\right)-8\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(3x-8\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\3x-8=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{8}{3}\end{cases}}}\)

Vậy tập hợp nghiệm \(S=\left\{-1;\frac{8}{3}\right\}\)

21 tháng 6 2017

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

7 tháng 7 2017

Mấy bài này đều là toán lớp 8 mà. Mình mới lớp 8 mà cũng làm được nữa là bạn lớp 9 mà không làm được afk?

27 tháng 5 2018

a) (3x - 2)(4x + 5) = 0

⇔ 3x - 2 = 0 hoặc 4x + 5 = 0

1) 3x - 2 = 0 ⇔ 3x = 2 ⇔ x = 2/3

2) 4x + 5 = 0 ⇔ 4x = -5 ⇔ x = -5/4

Vậy phương trình có tập nghiệm S = {2/3;−5/4}

b) (2,3x - 6,9)(0,1x + 2) = 0

⇔ 2,3x - 6,9 = 0 hoặc 0,1x + 2 = 0

1) 2,3x - 6,9 = 0 ⇔ 2,3x = 6,9 ⇔ x = 3

2) 0,1x + 2 = 0 ⇔ 0,1x = -2 ⇔ x = -20.

Vậy phương trình có tập hợp nghiệm S = {3;-20}

c) (4x + 2)(x2 +  1) = 0 ⇔ 4x + 2 = 0 hoặc x2 +  1 = 0

1) 4x + 2 = 0 ⇔ 4x = -2 ⇔ x = −1/2

2) x2 +  1 = 0 ⇔ x2 = -1 (vô lí vì x2 ≥ 0)

Vậy phương trình có tập hợp nghiệm S = {−1/2}

d) (2x + 7)(x - 5)(5x + 1) = 0

⇔ 2x + 7 = 0 hoặc x - 5 = 0 hoặc 5x + 1 = 0

1) 2x + 7 = 0 ⇔ 2x = -7 ⇔ x = −7/2

2) x - 5 = 0 ⇔ x = 5

3) 5x + 1 = 0 ⇔ 5x = -1 ⇔ x = −1/5

Vậy phương trình có tập nghiệm là S = {−7/2;5;−1/5}


 

1 tháng 7 2017

Đặt \(t=3x^2+5x+2\)

Do đó ta có:\(\sqrt{3x^2+5x+7}-\sqrt{3x^2+5^2+2}=1\)

               \(\sqrt{t+5}-\sqrt{t}=1\)

                 \(\left(\sqrt{t+5}-\sqrt{t}\right)^2=1\)

                 \(t+5-2\sqrt{t\left(t+5\right)}+t=1\)

                \(2t-2\sqrt{t\left(t+5\right)}+5=1\)

                \(2t+4=2\sqrt{t\left(t+5\right)}\)

                 \(\left(t+2\right)^2=t\left(t+5\right)\)

                      \(4t+4=5t\)

                            \(\Rightarrow t=4\)

Tại t=4 ta được:\(3x^2+5x+2=4\)

                        \(3x^2+5x-2=0\)

                        \(3x^2+6x-x-2=0\)

                               \(\Rightarrow\left(3x-1\right)\left(x+2\right)=0\)

               \(\Rightarrow\orbr{\begin{cases}3x-1=0\\x+2=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{1}{3}\\x=-2\end{cases}}\)