K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2021

\(3x+4\left(75-x\right)=275\)

\(3x-4x+300=271\)

\(-x+300=275\)

\(-x=275-300\)

\(-x=-25\)

\(x=25\)

a) Ta có: \(\sqrt{25x+75}+3\sqrt{x-2}=2\sqrt{x-2}+\sqrt{9x-18}\)

\(\Leftrightarrow5\sqrt{x+3}+3\sqrt{x-2}=2\sqrt{x-2}+3\sqrt{x-2}\)

\(\Leftrightarrow\sqrt{25x+75}=\sqrt{4x-8}\)

\(\Leftrightarrow25x-4x=-8-75\)

\(\Leftrightarrow21x=-83\)

hay \(x=-\dfrac{83}{21}\)

b) Ta có: \(\sqrt{\left(2x-1\right)^2}=4\)

\(\Leftrightarrow\left|2x-1\right|=4\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=4\\2x-1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=5\\2x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)

c) Ta có: \(\sqrt{\left(2x+1\right)^2}=3x-5\)

\(\Leftrightarrow\left|2x+1\right|=3x-5\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=3x-5\left(x\ge-\dfrac{1}{2}\right)\\2x+1=5-3x\left(x< \dfrac{1}{2}\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3x=-5-1\\2x+3x=5-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\left(nhận\right)\\x=\dfrac{4}{5}\left(loại\right)\end{matrix}\right.\)

d) Ta có: \(\sqrt{4x-12}-14\sqrt{\dfrac{x-2}{49}}=\sqrt{9x-18}+8\)

\(\Leftrightarrow2\sqrt{x-3}-2\sqrt{x-2}=3\sqrt{x-2}+8\)

\(\Leftrightarrow2\sqrt{x-3}-5\sqrt{x-2}=8\)

\(\Leftrightarrow4\left(x-3\right)+25\left(x-2\right)-20\sqrt{x^2-5x+6}=8\)

\(\Leftrightarrow4x-12+25x-50-8=20\sqrt{\left(x-2\right)\left(x-3\right)}\)

\(\Leftrightarrow20\sqrt{\left(x-2\right)\left(x-3\right)}=29x-70\)

\(\Leftrightarrow x^2-5x+6=\dfrac{\left(29x-70\right)^2}{400}\)

\(\Leftrightarrow x^2-5x+6=\dfrac{841}{400}x^2-\dfrac{203}{20}x+\dfrac{49}{4}\)

\(\Leftrightarrow\dfrac{-441}{400}x^2+\dfrac{103}{20}x-\dfrac{25}{4}=0\)

\(\Delta=\left(\dfrac{103}{20}\right)^2-4\cdot\dfrac{-441}{400}\cdot\dfrac{-25}{4}=-\dfrac{26}{25}\)(Vô lý)

vậy: Phương trình vô nghiệm

1 tháng 10 2023

\(\dfrac{3x-5}{\sqrt{x+4}}=\sqrt{x+4}\)  (ĐK: \(x>-4\) )

\(\Leftrightarrow3x-5=\sqrt{x+4}\cdot\sqrt{x+4}\)

\(\Leftrightarrow3x-5=\left(\sqrt{x+4}\right)^2\)

\(\Leftrightarrow3x-5=x+4\)

\(\Leftrightarrow3x-x=4+5\)

\(\Leftrightarrow2x=9\)

\(\Leftrightarrow x=\dfrac{9}{2}\left(tm\right)\)

Vậy: \(x=\dfrac{9}{2}\)

7 tháng 5 2022

undefined

Ta có: \(\sqrt{6-x}=3x-4\)

\(\Leftrightarrow6-x=9x^2-24x+16\)

\(\Leftrightarrow9x^2-24x+16-6+x=0\)

\(\Leftrightarrow9x^2-23x+10=0\)

\(\Delta=23^2-4\cdot9\cdot10=169\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{23-13}{18}=\dfrac{10}{18}=\dfrac{5}{9}\\x_2=\dfrac{23+13}{18}=\dfrac{36}{18}=2\end{matrix}\right.\)

Ta có: \(x^4-3x^2+2=0\)

\(\Leftrightarrow\left(x^2-2\right)\left(x^2-1\right)=0\)

\(\Leftrightarrow x\in\left\{1;-1;\sqrt{2};-\sqrt{2}\right\}\)

9 tháng 11 2021

\(PT\Leftrightarrow\sqrt{3x+1}=\sqrt{x+4}+1\\ \Leftrightarrow3x+1=x+5+2\sqrt{x+4}\\ \Leftrightarrow2x-4=2\sqrt{x+4}\\ \Leftrightarrow x-2=\sqrt{x+4}\\ \Leftrightarrow x^2-4x+4=x+4\\ \Leftrightarrow x^2-5x=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)

Thử lại ta thấy x=0 ko thỏa mãn

Vậy PT có nghiệm x=5

NV
9 tháng 11 2021

ĐKXĐ: \(x\ge-\dfrac{1}{3}\)

\(\sqrt{3x+1}=1+\sqrt{x+4}\)

\(\Leftrightarrow3x+1=1+x+4+2\sqrt{x+2}\)

\(\Leftrightarrow x+2-\sqrt{x+2}-4=0\)

Đặt \(\sqrt{x+2}=t\ge0\)

\(\Rightarrow t^2-t-4=0\Rightarrow\left[{}\begin{matrix}t=\dfrac{1+\sqrt{17}}{2}\\t=\dfrac{1-\sqrt{17}}{2}< 0\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x+2}=\dfrac{1+\sqrt{17}}{2}\)

\(\Rightarrow x=\dfrac{5+\sqrt{17}}{2}\)

1 tháng 11 2023

\(\sqrt{x^2-6x+9}-4=3x\left(đkxđ:x\ge-\dfrac{4}{3}\right)\\ \Leftrightarrow\sqrt{\left(x-3\right)^2}=3x+4\\ \Leftrightarrow\left|x-3\right|=3x+4\\ \Leftrightarrow\left[{}\begin{matrix}x-3=3x+4\\x-3=-3x-4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x-3x=4+3\\x+3x=-4+3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}-2x=7\\4x=-1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{7}{2}\left(ktm\right)\\x=-\dfrac{1}{4}\left(tm\right)\end{matrix}\right.\)

1 tháng 11 2023

Chị xem lại dòng thứ 4 ạ :>