\(2x^2+x+5=0\)

\(2x^2-2x+8=0\)...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2018

a)  \(2x^2+x+5=0\)

Xét:  \(\Delta=1^2-4.2.5=-39< 0\)

=> pt vô nghiệm

b)  \(2x^2-2x+8=0\)

Xét:  \(\Delta=2^2-4.2.8=-60< 0\)

=>  pt vô nghiệm

23 tháng 7 2019

a, 12 + |2x - 5| = 21

=> |2x - 5| = 9

=> \(\orbr{\begin{cases}2x-5=9\\2x-5=-9\end{cases}}\)

=> \(\orbr{\begin{cases}2x=14\\2x=-4\end{cases}}\)

=> \(\orbr{\begin{cases}x=7\\x=-2\end{cases}}\)

b, 9 - |x| = 0

=> |x| = 9

=> \(\orbr{\begin{cases}x=9\\x=-9\end{cases}}\)

~Study well~

16 tháng 5 2020

cac ban giup minh nhe

16 tháng 5 2020

Đặt: \(\sqrt{2x^2+4x+8}=t>0;\)

=> \(2x^2+4x+8=t^2\)

=> \(x^2+2x=\frac{t^2-8}{2}\) thế vào  phương trình ta có: 

\(\frac{t^2-8}{2}=t+20\)

<=> \(t^2-2t-48=0\)

<=> t = -6 ( loại ) hoặc t = 8 

Với t = 8 ta có phương trình: \(2x^2+4x+8=64\)

<=> \(x=-1-\sqrt{29}\) hoặc  \(x=-1+\sqrt{29}\)

NV
4 tháng 3 2019

a/ \(\left(2x\right)^2-2.2x.3+3^2-16=0\)

\(\Leftrightarrow\left(2x-3\right)^2=16\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=4\\2x-3=-4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}2x=7\\2x=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=\dfrac{-1}{2}\end{matrix}\right.\)

b/ \(x^2+2\sqrt{3}.x+\left(\sqrt{3}\right)^2-4=0\)

\(\Leftrightarrow\left(x+\sqrt{3}\right)^2=4\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\sqrt{3}=2\\x+\sqrt{3}=-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2-\sqrt{3}\\x=-2-\sqrt{3}\end{matrix}\right.\)

c/ \(3x^2-6x+3-2=0\)

\(\Leftrightarrow3\left(x^2-2x+1\right)=2\)

\(\Leftrightarrow\left(x-1\right)^2=\dfrac{2}{3}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=\dfrac{\sqrt{6}}{3}\\x-1=\dfrac{-\sqrt{6}}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3+\sqrt{6}}{3}\\x=\dfrac{3-\sqrt{6}}{3}\end{matrix}\right.\)

d/ \(\left(\sqrt{2}x\right)^2-2.2.\left(\sqrt{2}x\right)+2^2-2=0\)

\(\Leftrightarrow\left(\sqrt{2}x-2\right)^2=2\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2}x-2=\sqrt{2}\\\sqrt{2}x-2=-\sqrt{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt{2}x=2+\sqrt{2}\\\sqrt{2}x=2-\sqrt{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\sqrt{2}+1\\x=\sqrt{2}-1\end{matrix}\right.\)

4 tháng 3 2019

Hộp thư của chị có vấn đề rồi, không đọc được tin nhắn TvT

NV
9 tháng 4 2019

a/ Bạn tự giải

b/ \(\Delta'=-m^2+2m\)

Để pt có nghiệm thì \(\Delta'\ge0\Rightarrow-m^2+2m\ge0\Rightarrow0\le m\le2\)

Khi đó theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=m^2-2m+1=\left(m-1\right)^2\end{matrix}\right.\)

Xét \(A=\left|x_2-x_1\right|\Rightarrow A^2=\left(x_2-x_1\right)^2\)

\(A^2=x_1^2+x_2^2-2x_1x_2=\left(x_1+x_2\right)^2-4x_1x_2\)

\(A^2=4-4\left(m-1\right)^2\le4\)

\(\Rightarrow A\le2\) (đpcm)

Dấu "=" xảy ra khi \(m-1=0\Rightarrow m=1\)

20 tháng 2 2016

Cho kq luôn :X=1

30 tháng 3 2018

Tưởng bn lớp 5 ạ?? Sao lại đăng câu hỏi lp 9 ạ??:)

30 tháng 3 2018

minh lop 5 dang chi minh muon nick cua minh

28 tháng 1 2016

\(\Leftrightarrow-y^2+\left(x+1\right)y+2x^2-5x+2=0\)

\(\Rightarrow-\left(y^2+\left(-x-1\right)y-2x^2+5x-2\right)=0\)

\(\Rightarrow y^2+\left(-x-1\right)y-2x^2+5x-2=0\)

\(\Leftrightarrow y^2-xy-y-2x^2+5x-2=0\)

\(\Rightarrow y=2-x\) hoặc \(y=2x-1\)