Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 12 + |2x - 5| = 21
=> |2x - 5| = 9
=> \(\orbr{\begin{cases}2x-5=9\\2x-5=-9\end{cases}}\)
=> \(\orbr{\begin{cases}2x=14\\2x=-4\end{cases}}\)
=> \(\orbr{\begin{cases}x=7\\x=-2\end{cases}}\)
b, 9 - |x| = 0
=> |x| = 9
=> \(\orbr{\begin{cases}x=9\\x=-9\end{cases}}\)
~Study well~
Đặt: \(\sqrt{2x^2+4x+8}=t>0;\)
=> \(2x^2+4x+8=t^2\)
=> \(x^2+2x=\frac{t^2-8}{2}\) thế vào phương trình ta có:
\(\frac{t^2-8}{2}=t+20\)
<=> \(t^2-2t-48=0\)
<=> t = -6 ( loại ) hoặc t = 8
Với t = 8 ta có phương trình: \(2x^2+4x+8=64\)
<=> \(x=-1-\sqrt{29}\) hoặc \(x=-1+\sqrt{29}\)
a/ \(\left(2x\right)^2-2.2x.3+3^2-16=0\)
\(\Leftrightarrow\left(2x-3\right)^2=16\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=4\\2x-3=-4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}2x=7\\2x=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=\dfrac{-1}{2}\end{matrix}\right.\)
b/ \(x^2+2\sqrt{3}.x+\left(\sqrt{3}\right)^2-4=0\)
\(\Leftrightarrow\left(x+\sqrt{3}\right)^2=4\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\sqrt{3}=2\\x+\sqrt{3}=-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2-\sqrt{3}\\x=-2-\sqrt{3}\end{matrix}\right.\)
c/ \(3x^2-6x+3-2=0\)
\(\Leftrightarrow3\left(x^2-2x+1\right)=2\)
\(\Leftrightarrow\left(x-1\right)^2=\dfrac{2}{3}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=\dfrac{\sqrt{6}}{3}\\x-1=\dfrac{-\sqrt{6}}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3+\sqrt{6}}{3}\\x=\dfrac{3-\sqrt{6}}{3}\end{matrix}\right.\)
d/ \(\left(\sqrt{2}x\right)^2-2.2.\left(\sqrt{2}x\right)+2^2-2=0\)
\(\Leftrightarrow\left(\sqrt{2}x-2\right)^2=2\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2}x-2=\sqrt{2}\\\sqrt{2}x-2=-\sqrt{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt{2}x=2+\sqrt{2}\\\sqrt{2}x=2-\sqrt{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\sqrt{2}+1\\x=\sqrt{2}-1\end{matrix}\right.\)
Hộp thư của chị có vấn đề rồi, không đọc được tin nhắn TvT
a/ Bạn tự giải
b/ \(\Delta'=-m^2+2m\)
Để pt có nghiệm thì \(\Delta'\ge0\Rightarrow-m^2+2m\ge0\Rightarrow0\le m\le2\)
Khi đó theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=m^2-2m+1=\left(m-1\right)^2\end{matrix}\right.\)
Xét \(A=\left|x_2-x_1\right|\Rightarrow A^2=\left(x_2-x_1\right)^2\)
\(A^2=x_1^2+x_2^2-2x_1x_2=\left(x_1+x_2\right)^2-4x_1x_2\)
\(A^2=4-4\left(m-1\right)^2\le4\)
\(\Rightarrow A\le2\) (đpcm)
Dấu "=" xảy ra khi \(m-1=0\Rightarrow m=1\)
\(\Leftrightarrow-y^2+\left(x+1\right)y+2x^2-5x+2=0\)
\(\Rightarrow-\left(y^2+\left(-x-1\right)y-2x^2+5x-2\right)=0\)
\(\Rightarrow y^2+\left(-x-1\right)y-2x^2+5x-2=0\)
\(\Leftrightarrow y^2-xy-y-2x^2+5x-2=0\)
\(\Rightarrow y=2-x\) hoặc \(y=2x-1\)
a) \(2x^2+x+5=0\)
Xét: \(\Delta=1^2-4.2.5=-39< 0\)
=> pt vô nghiệm
b) \(2x^2-2x+8=0\)
Xét: \(\Delta=2^2-4.2.8=-60< 0\)
=> pt vô nghiệm