Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: \(-x^2+x+1\ge0\) (xấu quá em hok dám giải đâu:v)
PT \(\Leftrightarrow4x^2-4x+3\left(1-\sqrt{x-x^2+1}\right)=0\)
\(\Leftrightarrow4x\left(x-1\right)+3.\frac{x\left(x-1\right)}{1+\sqrt{x-x^2+1}}=0\)
\(\Leftrightarrow x\left(x-1\right)\left(4+\frac{3}{1+\sqrt{x-x^2+1}}\right)=0\)
Cái ngoặc to hiển nhiên vô nghiệm.
Do đó x = 0 (TM) hoặc x = 1 (TM)
Vậy....
P.s: đúng ko ta mà sao em thấy đơn giản quá, thường liên hợp kiểu này cái ngoặc to xấu xí lắm mà sao lần này nó dễ..
\(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=7\)
Ta đánh giá vế phải \(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=\sqrt{2\left(x-4\right)^2+9}+\sqrt{3\left(x-4\right)^2+16}\ge\sqrt{9}+\sqrt{16}=3+4=7\)(Do \(\left(x-4\right)^2\ge0\forall x\))
Như vậy, để \(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=7\)(hay dấu "=" xảy ra) thì \(\left(x-4\right)^2=0\)hay x = 4
Vậy nghiệm duy nhất của phương trình là 4
f, \(\sqrt{8+\sqrt{x}}+\sqrt{5-\sqrt{x}}=5\left(đk:25\ge x\ge0\right)\)
\(< =>\sqrt{8+\sqrt{x}}-\sqrt{9}+\sqrt{5-\sqrt{x}}-\sqrt{4}=0\)
\(< =>\frac{8+\sqrt{x}-9}{\sqrt{8+\sqrt{x}}+\sqrt{9}}+\frac{5-\sqrt{x}-4}{\sqrt{5-\sqrt{x}}+\sqrt{4}}=0\)
\(< =>\frac{\sqrt{x}-1}{\sqrt{8+\sqrt{x}}+\sqrt{9}}-\frac{\sqrt{x}-1}{\sqrt{5-\sqrt{x}}+\sqrt{4}}=0\)
\(< =>\left(\sqrt{x}-1\right)\left(\frac{1}{\sqrt{8+\sqrt{x}}+\sqrt{9}}-\frac{1}{\sqrt{5-\sqrt{x}}+\sqrt{4}}\right)=0\)
\(< =>x=1\)( dùng đk đánh giá cái ngoặc to nhé vì nó vô nghiệm )
đặt \(\sqrt{2x-x^2}=a\)
phương trình trở thành:
\(\sqrt{1+a}+\sqrt{1-a}=2\left(1-a^2\right)^2\left(1-2a^2\right)\)
đến đây thì khai triển đi
Đặt 2x+y=a
pt <=> (a-1)^2+a^2+2a+1=0
<=> (a-1)^2+(a+1)^2=0
Có (a-1)^2 và (a+1)^2>=0 với mọi a
Mà tổng =0
=> ''='' xảy ra <=> a=1 và a=-1
=> vô lí do a ko thể = 2 giá trị
=> pt vô nghiệm.
\(\left(2X-1\right)^2=\sqrt{x^2-x-2}+1\)
\(\Leftrightarrow4x^2+4x+1=x^2-x-2+2\sqrt{x^2-x-2}+1\)
\(\Leftrightarrow4x+4x+1-x^2+x+2-1=2\sqrt{x^2-x-2}+1\)
\(\Leftrightarrow3x^2+5x-2=2\sqrt{x^2-x-2}\)
\(\Leftrightarrow\int^{3x^2+5x-2=0}_{4\left(x^2-x-2\right)=3x^2+5x-2}\)..............
Đặt \(y=\sqrt{x^2-x-2}\left(y\ge0\right)\)rồi tính nha
S=\(\frac{1-\sqrt{13}}{2};\frac{1+\sqrt{13}}{2};3;-2\)
năm mới zui zẻ