Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Giải rồi
b/ ĐKXĐ: \(x\ge-1\)
Đặt \(\sqrt{2x+3}+\sqrt{x+1}=t>0\)
\(\Rightarrow t^2=3x+4+2\sqrt{2x^2+5x+3}\) (1)
Pt trở thành:
\(t=t^2-6\Leftrightarrow t^2-t-6=0\Rightarrow\left[{}\begin{matrix}t=3\\t=-2\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{2x+3}+\sqrt{x+1}=3\)
\(\Leftrightarrow3x+4+2\sqrt{2x^2+5x+3}=9\)
\(\Leftrightarrow2\sqrt{2x^2+5x+3}=5-3x\left(x\le\frac{5}{3}\right)\)
\(\Leftrightarrow4\left(2x^2+5x+3\right)=\left(5-3x\right)^2\)
\(\Leftrightarrow...\)
e/ ĐKXD: \(x>0\)
\(5\left(\sqrt{x}+\frac{1}{2\sqrt{x}}\right)=2\left(x+\frac{1}{4x}\right)+4\)
Đặt \(\sqrt{x}+\frac{1}{2\sqrt{x}}=t\ge\sqrt{2}\)
\(\Rightarrow t^2=x+\frac{1}{4x}+1\)
Pt trở thành:
\(5t=2\left(t^2-1\right)+4\)
\(\Leftrightarrow2t^2-5t+2=0\Rightarrow\left[{}\begin{matrix}t=2\\t=\frac{1}{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x}+\frac{1}{2\sqrt{x}}=2\)
\(\Leftrightarrow2x-4\sqrt{x}+1=0\)
\(\Rightarrow\sqrt{x}=\frac{2\pm\sqrt{2}}{2}\)
\(\Rightarrow x=\frac{3\pm2\sqrt{2}}{2}\)
Hãy tích cho tui đi
vì câu này dễ mặc dù tui ko biết làm
Yên tâm khi bạn tích cho tui
Tui sẽ ko tích lại bạn đâu
THANKS
( x +1 ) ( x + 4 ) = 5 căn ( x^2 + 5x +28 ) (1)
= ( x + 1 ) ( x + 4 ) = 5 căn [ (x^2 + 5x + 4) + 24 ]
= ( x + 1 ) ( x + 4 ) = 5 căn [ ( x + 1 ) ( x + 4 ) + 24 ]
Đặt a = ( x + 1 ) ( x + 4 )
(1) <=> a = 5 căn ( a + 24 )
<=> a^2 = 25 ( a + 24 )
<=> a^2 - 25a - 600 = 0
<=> a1 = 40
a2 = -15
với a = 40 ta có:
( x + 1 ) ( x + 4 ) = 40
<=> x^2 + 5x + 4 = 40
<=> x^2 + 5x - 36 = 0
<=> x = 4 và x = - 9
với a = -15, ta có:
( x + 1 ) ( x + 4 ) = -15
<=> x^2 + 5x + 4 = -15
<=> x^2 + 5x + 19 = 0
delta < 0 => pt vô nghiệm
Vậy s = { -9; 4}
a) \(\sqrt{5x}=\sqrt{35}\)
ĐK : x ≥ 0
Bình phương hai vế
pt ⇔ 5x = 35 ⇔ x = 7 ( tm )
b) \(\sqrt{36\left(x-5\right)}=18\)
ĐK : x ≥ 5
Bình phương hai vế
pt ⇔ 36( x - 5 ) = 324
⇔ x - 5 = 9
⇔ x = 14 ( tm )
c) \(\sqrt{16\left(1-4x+4x^2\right)}-20=0\)
⇔ \(\sqrt{4^2\left(1-2x\right)^2}=20\)
⇔ \(\sqrt{\left(4-8x\right)^2}=20\)
⇔ \(\left|4-8x\right|=20\)
⇔ \(\orbr{\begin{cases}4-8x=20\\4-8x=-20\end{cases}}\)
⇔ \(\orbr{\begin{cases}x=-2\\x=3\end{cases}}\)
d) \(\sqrt{3-2x}\le\sqrt{5}\)
ĐK : x ≤ 3/2
Bình phương hai vế
bpt ⇔ 3 - 2x ≤ 5
⇔ -2x ≤ 2
⇔ x ≥ -1
Kết hợp với ĐK => Nghiệm của bpt là -1 ≤ x ≤ 3/2
\(a,\sqrt{5x}=\sqrt{35}\left(x\ge0\right)\)
\(\Leftrightarrow5x=35\)
\(\Leftrightarrow x=7\left(tm\right)\)
vậy...
b, \(\sqrt{36\left(x-5\right)}=18\left(x\ge5\right)\)
\(\Leftrightarrow6\sqrt{x-5}=18\)
\(\Leftrightarrow\sqrt{x-5}=3\)
\(\Leftrightarrow x-5=9\)
\(\Leftrightarrow x=14\left(tm\right)\)
vậy...
c, \(\sqrt{16\left(1-4x+4x^2\right)}-20=0\)
\(\Leftrightarrow4\sqrt{\left(1-2x\right)^2}=20\)
\(\Leftrightarrow\sqrt{\left(1-2x\right)^2}=5\)
\(\Leftrightarrow\left|1-2x\right|=5\)
\(\Leftrightarrow\orbr{\begin{cases}1-2x=5\\1-2x=-5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=3\end{cases}}\)
vậy....
\(d,\sqrt{3-2x}< 5\left(x< 1.5\right)\)
\(\Leftrightarrow3-2x< 25\)
\(\Leftrightarrow-2x< 22\)
\(\Leftrightarrow x>-11\)
\(\Rightarrow-11< x< 1.5\)
vạy.