Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}x^3-y^3=35\\2x^2+3y^2=4x-9y\left(1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y^3-x^3=-35\\3y^2+9y+2x^2-4x=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y^3-x^3=-35\\9y^2+27y+6x^2-12x=0\end{matrix}\right.\)
\(\Rightarrow\left(y^3+9y^2+27y\right)-\left(x^3-6x^2+12x\right)=-35\)
\(\Rightarrow\left(y^3+9y^2+27y+27\right)-\left(x^3-6x^2+12x-8\right)=0\)
\(\Rightarrow\left(y+3\right)^3-\left(x-2\right)^2=0\)
\(\Rightarrow\left(y-x+5\right)\left[\left(y+3\right)^2+\left(y+3\right)\left(x-2\right)+\left(x-2\right)^2\right]=0\)
*Với \(x=y+5\). Thay vào (1) ta được:
\(2\left(y+5\right)^2+3y^2=4\left(y+5\right)-9y\)
\(\Leftrightarrow2y^2+20y+50+3y^2=4y+20-9y\)
\(\Leftrightarrow5y^2+25y+30=0\Leftrightarrow y^2+5y+6=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=-2\\y=-3\end{matrix}\right.\)
*\(y=-2\Rightarrow x=3\) ; \(y=-3\Rightarrow x=2\).
*Với \(\left(y+3\right)^2+\left(y+3\right)\left(x-2\right)+\left(x-2\right)^2=0\). Ta có:
\(\left(y+3\right)^2+\left(y+3\right)\left(x-2\right)+\left(x-2\right)^2\)
\(=\left[\left(y+3\right)+\dfrac{\left(x-2\right)}{2}\right]^2+\dfrac{3}{4}\left(x-2\right)^2\ge0\)
Dấu "=" xảy ra khi \(x=2;y=-3\)
Vậy \(x=2;y=-3\)
Thử lại ta có nghiệm (x;y) của hệ đã cho là \(\left(3;-2\right),\left(2;-3\right)\)
ĐK: \(\hept{\begin{cases}x\ge2\\y\ge-\frac{1}{3}\end{cases}}\)
\(\sqrt{x-2}+x^3-6x^2+12x=\sqrt{3y+1}+27y^3+27y^2+9y+9\)
<=> \(\sqrt{x-2}+x^3-6x^2+12x-8=\sqrt{3y+1}+27y^3+27y^2+9y+1\)
<=> \(\sqrt{x-2}+\left(x-2\right)^3=\sqrt{3y+1}+\left(3y+1\right)^3\)
<=> \(\left(\sqrt{x-2}-\sqrt{3y+1}\right)+\left[\left(x-2\right)^3-\left(3y+1\right)^3\right]=0\)
<=> \(\frac{x-3y-3}{\sqrt{x-2}+\sqrt{3y+1}}+\left(x-3y-3\right)\left[\left(x-2\right)^2+\left(x-2\right)\left(3y+1\right)+\left(3y+1\right)^2\right]=0\)
<=> \(\left(x-3y-3\right)\left(\frac{1}{\sqrt{x-2}+\sqrt{3y+1}}+\left(x-2\right)^2+\left(x-2\right)\left(3y+1\right)+\left(3y+1\right)^2\right)=0\)
<=> \(x-3y-3=0\)
vì \(\frac{1}{\sqrt{x-2}+\sqrt{3y+1}}+\left(x-2\right)^2+\left(x-2\right)\left(3y+1\right)+\left(3y+1\right)^2>0\)
<=> x = 3y + 3
Thế vào phương trình trên ta có:
\(2+2\left(3y+3\right)^2-2y^2+3\left(3y+3\right)y-4\left(3y+3\right)-3y=0\)
<=> \(25y^2+30y+8=0\Leftrightarrow\orbr{\begin{cases}y=-\frac{2}{5}\\y=-\frac{4}{5}\end{cases}}\)không thỏa mãn đk
Vậy hệ vô nghiệm.
Từ pt dưới:
\(x^2+9y^2=6xy\Leftrightarrow x^2-6xy+9y^2=0\)
\(\Leftrightarrow\left(x-3y\right)^2=0\Leftrightarrow x-3y=0\Leftrightarrow x=3y\)
Thế lên pt trên: \(2.\left(3y\right)^2+y^2=19\)
\(\Leftrightarrow19y^2=19\Leftrightarrow y^2=1\Rightarrow\left[{}\begin{matrix}y=1\Rightarrow x=3\\y=-1\Rightarrow x=-3\end{matrix}\right.\)
mk 0 hỉu mới hok lớp 6