K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(x\left(2x-3\right)-2\left(3-x^2\right)+1=0\)

=>\(2x^2-3x-6+2x^2+1=0\)

=>\(4x^2-3x-5=0\)

\(\text{Δ}=\left(-3\right)^2-4\cdot4\cdot\left(-5\right)=9+80=89>0\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left[{}\begin{matrix}x=\dfrac{3-\sqrt{89}}{2\cdot4}=\dfrac{3-\sqrt{89}}{8}\\x=\dfrac{3+\sqrt{89}}{2\cdot4}=\dfrac{3+\sqrt{89}}{8}\end{matrix}\right.\)

1)2x3+3x2+2x+3=0

=> (2x3+3x2)+(2x+3)=0

=> x2(2x+3)+(2x+3)=0

=> (2x+3)(x2+1)=0

=>\(\hept{\begin{cases}2x+3=0\\x^2+1=0\end{cases}}\)=>\(\hept{\begin{cases}2x=-3\\x^2=-1\end{cases}}\)=>\(\hept{\begin{cases}x=\frac{-3}{2}\\vo.nghiem\end{cases}}\)

Vậy x=-3/2

2)x2-3x-18=0

=> (x2+3x)-(6x+18)=0

=> x(x+3)-6(x+3)=0

=> (x+3)(x-6)=0

=> \(\hept{\begin{cases}x+3=0\\x-6=0\end{cases}}\)=>\(\hept{\begin{cases}x=-3\\x=6\end{cases}}\)

Vậy x=-3 hoặc x=6

3)Sai đề rồi bạn, 30 thành 30x mới đúng

x3-11x2+30x=0

=> x(x2-11x+30)=0

=> x[(x2-5x)-(6x-30)]=0

=> x[x(x-5)-6(x-5)]=0

=> x(x-5)(x-6)=0

=>\(\hept{\begin{cases}x=0\\x-5=0\\x-6=0\end{cases}}\)=>\(\hept{\begin{cases}x=0\\x=5\\x=6\end{cases}}\)

Vậy x=0 hoặc x=5 hoặc x=6

14 tháng 10 2016

a) x2(x-3)-12+4x=0

=>x2(x-3)+4x-12=0

=>x2(x-3)+4(x-3)=0

=>(x2+4)(x-3)=0

=>x-3=0 (loại x2+4=0 do x2+4 >= 4 > 0 với mọi x)

=>x=3

b)(2x-1)2-(x+3)2=0

=>(2x-1-x-3)(2x-1+x+3)=0

=>(x-4)(3x+2)=0

=>x=4 hoặc x=-2/3

c)2x2-5=0

=>2x2=5=>x2=\(\frac{5}{2}=>\hept{\begin{cases}x=\sqrt{\frac{5}{2}}\\x=-\sqrt{\frac{5}{2}}\end{cases}}\)

16 tháng 8 2020

a)

pt <=>     \(x^2+4x+4+x^2-6x+9=2x^2+14x\)

<=>     \(2x^2-2x+13=2x^2+14x\)

<=>     \(16x=13\)

<=>     \(x=\frac{13}{16}\)

b)

pt <=>     \(x^3+3x^2+3x+1+x^3-3x^2+3x-1=2x^3\)

<=>   \(2x^3+6x=2x^3\)

<=>   \(6x=0\)

<=>   \(x=0\)

c)

pt <=>    \(\left(x^3-3x^2+3x-1\right)-125=0\)

<=>   \(\left(x-1\right)^3=125\)

<=>   \(x-1=5\)

<=>   \(x=6\)

d)

pt <=>   \(\left(x^2-2x+1\right)+\left(y^2+4y+4\right)=0\)

<=>   \(\left(x-1\right)^2+\left(y+2\right)^2=0\)     (1)

CÓ:   \(\left(x-1\right)^2;\left(y+2\right)^2\ge0\forall x;y\)

=>   \(\left(x-1\right)^2+\left(y+2\right)^2\ge0\)       (2)

TỪ (1) VÀ (2) =>    DÁU "=" XẢY RA <=>   \(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{cases}}\)

<=>     \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

e)

pt <=>   \(2x^2+8x+8+y^2-2y+1=0\)

<=>   \(2\left(x+2\right)^2+\left(y-1\right)^2=0\)

TA LUÔN CÓ:   \(2\left(x+2\right)^2+\left(y-1\right)^2\ge0\forall x;y\)

=> DẤU "=" XẢY RA <=>   \(\hept{\begin{cases}2\left(x+2\right)^2=0\\\left(y-1\right)^2=0\end{cases}}\) 

<=>     \(\hept{\begin{cases}x=-2\\y=1\end{cases}}\)

16 tháng 8 2020

a) ( x + 2 )2 + ( x - 3 )2 = 2x( x + 7 )

<=> x2 + 4x + 4 + x2 - 6x + 9 = 2x2 + 14x

<=> x2 + 4x + x2 - 6x - 2x2 - 14x = -4 - 9

<=> -16x = -13

<=> x = 13/16

b) ( x + 1 )3 + ( x - 1 )3 = 2x3

<=> x3 + 3x2 + 3x + 1 + x3 - 3x2 + 3x - 1 = 2x3

<=> x3 + 3x2 + 3x + x3 - 3x2 + 3x - 2x3 = -1 + 1

<=> 6x = 0

<=> x = 0

c) x3 - 3x2 + 3x - 126 = 0

<=> ( x3 - 3x2 + 3x - 1 ) - 125 = 0

<=> ( x - 1 )3 = 125

<=> ( x - 1 )3 = 53

<=> x - 1 = 5

<=> x = 6

d) x2 + y2 - 2x + 4y + 5 = 0

<=> ( x2 - 2x + 1 ) + ( y2 + 4y + 4 ) = 0

<=> ( x - 1 )2 + ( y + 2 )2 = 0 (*)

\(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(y+2\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2\ge0\forall x,y\)

Đẳng thức xảy ra ( tức (*) ) <=> \(\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

e) 2x2 + 8x + y2 - 2y + 9 = 0

<=> 2( x2 + 4x + 4 ) + ( y2 - 2y + 1 ) = 0

<=> 2( x + 2 )2 + ( y - 1 )2 = 0 (*)

\(\hept{\begin{cases}2\left(x+2\right)^2\ge0\forall x\\\left(y-1\right)^2\ge0\forall y\end{cases}}\Rightarrow2\left(x+2\right)^2+\left(y-1\right)^2\ge0\forall x,y\)

Đẳng thức xảy ra ( tức xảy ra (*) ) <=> \(\hept{\begin{cases}x+2=0\\y-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-2\\y=1\end{cases}}\)

15 tháng 12 2014

(2x-3)2-(x+5)2=0

<=>(2x-3-x-5)(2x-3+x+5)=0

<=>(x-8)(3x+2)=0

<=>x-8=0 hoặc 3x+2=0

<=>x=8 hoặc x=-2/3


 

7 tháng 12 2017

(2x-3)2
-(x+5)2=0
<=>(2x-3-x-5)(2x-3+x+5)=0
<=>(x-8)(3x+2)=0
<=>x-8=0 hoặc 3x+2=0
<=>x=8 hoặc x=-2/3

chcú cậu hok tốt @_@

a) \(\left(x+2\right)^2-9=0\)

\(=>\left(x+2\right)^2-3^2=0\\ =>\left(x+2-3\right).\left(x+2+3\right)=0\)

\(=>\left(x-1\right).\left(x+5\right)=0\)

\(=>\orbr{\begin{cases}x-1=0\\x+5=0\end{cases}}=>\orbr{\begin{cases}x=1\\x=-5\end{cases}}\)

Vậy x= 1 hoặc x= -5

b) \(x^2-2x+1=25\)

\(=>x^2-2.x.x+1^2=25\)

\(=>\left(x-1\right)^2-25=0\\ =>\left(x-1\right)^2-5^2=0\)

\(=>\left(x-1-5\right).\left(x-1+5\right)=0\)

\(=>\left(x-6\right).\left(x+4\right)=0=>\orbr{\begin{cases}x-6=0\\x+4=0\end{cases}}\)

\(=>\orbr{\begin{cases}x=6\\x=-4\end{cases}}\)

Vậy x= 6 hoặc x= -4

c) \(4x\left(x-1\right)-\left(2x+5\right)\left(2x-5\right)=1\)

\(=>4x\left(x-1\right)-\left[\left(2x\right)^2-5^2\right]=1\)

\(=>4x\left(x-1\right)-4x^2+25-1=0\)

\(=>4x\left(x-1\right)-4x^2+24=0\)

\(=>4x\left(x-1\right)-\left(4x^2-24\right)=0\\ =>4x\left(x-1\right)-4\left(x^2-6\right)=0\)

..................... tắc ròi -.-"

d) \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x^2+3\right)=15\)

\(=>x^3+27-x^3-3x=15\)

\(=>27-3x-15=0=>12-3x=0=>3\left(4-x\right)=0\)

Vì \(3>0=>4-x=0=>x=4\)

Vậy x= 4

e) \(3\left(x+2\right)^2+\left(2x+1\right)^2-7\left(x+3\right)\left(x-3\right)=28\)

\(=>3\left(x^2+2.x.2+2^2\right)+4x^2+4x+1-7\left(x^2-9\right)=28\)

\(=>3\left(x^2+4x+4\right)+4x^2+4x+1-7x^2+63=28\)

\(=>3x^2+12x+12+4x^2+4x+1-7x^2+63=28\)

\(=>16x+75=28=>16x=-47=>x=\frac{-47}{16}\)

Cậu có thể tham khảo bài làm trên đây ạ, chúc cậu học tốt :>'-'

10 tháng 10 2020

Cảm ơn cậu nhiều nhé!

2 tháng 10 2017

t.i.c.k mik mik t.i.c.k lại

18 tháng 9 2018

Bài 1:

a) \(9\left(4x+3\right)^2=16\left(3x-5\right)^2\)

\(114x^2+216x+81=114x^2-480x+400\)

\(144x^2+216x=144x^2-480x+400-81\)

\(114x^2+216=114x^2-480x+319\)

\(696x=319\)

\(\Rightarrow x=\frac{11}{24}\)

b) \(\left(x^3-x^2\right)^2-4x^2+8x-4=0\)

\(\left(x-1\right)^2\left(x^2+2\right)\left(x+\sqrt{2}\right)\left(x-\sqrt{2}\right)=0\)

\(\Rightarrow x=1\)

c) \(x^5+x^4+x^3+x^2+x+1=0\)

\(\left(x+1\right)\left(x^2+x+1\right)\left(x^2-x+1\right)=0\)

\(\Rightarrow x=-1\)

Bài 2:

a) \(5x^3-7x^2-15x+21=0\)

\(\left(5x-7\right)\left(x+\sqrt{3}\right)\left(x-\sqrt{3}\right)=0\)

\(\Rightarrow x=\frac{7}{5}\)

b) \(\left(x-3\right)^2=4x^2-20x+25\)

\(x^2-6x+9-25=4x^2-20x+25\)

\(x^2-6x+9=4x^2-20x+25-25\)

\(x^2-6x-16=4x^2-20x\)

\(x^2+14x-16=4x^2-4x^2\)

\(-3x^2+14x-16=0\)

\(\Rightarrow\orbr{\begin{cases}x=2\\x=\frac{8}{3}\end{cases}}\)

c) \(\left(x-1\right)^2-5=\left(x+2\right)\left(x-2\right)-x\left(x-1\right)\)

\(x^2-2x=x-4\)

\(x^2-2x=x-4+4\)

\(x^2-2x=x-x\)

\(x^2-3x=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)

d) \(\left(2x-3\right)^3-\left(2x+3\right)\left(4x^2-1\right)=-24\)

\(-48x^2+56x-24=-24\)

\(-48x^2+56x=-24+24\)

\(-48x^2+56=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{7}{6}\end{cases}}\)

mình ko chắc

Bài 1

A, 11/24

B, -1

chúc bn học tốt

26 tháng 8 2019

a) \(3x^3-6x^2=0\)

\(3x^2\left(x-2\right)=0\)

\(\orbr{\begin{cases}3x^2=0\\x-2=0\end{cases}}\)

\(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

b) \(x\left(x-4\right)-12x+48=0\)

\(x^2-4x-12x+48=0\)

\(x^2-16x+48=0\)

\(\left(x-12\right)\left(x-4\right)=0\)

\(\orbr{\begin{cases}x-12=0\\x-4=0\end{cases}}\)

\(\orbr{\begin{cases}x=12\\x=4\end{cases}}\)

c) Viết thiếu nha :v

d) \(2x\left(x-5\right)-x\left(2x+3\right)=16\)

\(2x^2-10x-x^2-2x^2-3x=16\)

\(-13x=16\)

\(x=-\frac{16}{13}\)

e) \(\left(4x^2-1\right)-\left(x-1\right)^2=-3\)

\(4x^2-1-x^2+2x-1=-3\)

\(3x^2-2+2x=-3\)

\(3x^2-2+2x+3=0\)

\(3x^2+1+2x=0\)

Vì \(3x^2+1+2x>0\)nên: 

\(x\in\varnothing\)

26 tháng 8 2019

A) 3x3 - 6x2 = 0

=> 3x2(x - 2) = 0

=> \(\orbr{\begin{cases}3x^2=0\\x-2=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

b) x(x - 4) - 12x + 48 = 0

=> x(x - 4) - 12(x - 4) = 0

=> (x - 12)(x - 4) = 0

=> \(\orbr{\begin{cases}x-12=0\\x-4=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=12\\x=4\end{cases}}\)

c) x(x - 4) - (x2 - 8) = x2 - 4x - x2 + 8 = 4x + 8