\(2\left(x^2-x+6\right)=5\sqrt{x^3+8}.\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2017

bÀI LÀM

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

22 tháng 8 2017

a)\(pt\Leftrightarrow\sqrt{x^2+1}=\frac{2x^2-2x+2}{4x-1}\)

\(\Leftrightarrow x^2+1=\frac{4x^4-8x^3+12x^2-8x+4}{16x^2-8x+1}\)

\(\Leftrightarrow\left(x^2+1\right)\left(16x^2-8x+1\right)=4x^4-8x^3+12x^2-8x+4\)

\(\Leftrightarrow16x^4-8x^3+17x^2-8x+1=4x^4-8x^3+12x^2-8x+4\)

\(\Leftrightarrow\left(3x^2-1\right)\left(4x^2+3\right)=0\Rightarrow x=\frac{1}{\sqrt{3}}\)

b)\(3\sqrt{x^3+8}=2\left(x^2-3x+2\right)\)

\(\Leftrightarrow3\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}=2\left(x^2-3x+2\right)\)

Đặt \(\hept{\begin{cases}\sqrt{x+2}=a\\\sqrt{x^2-2x+4}=b\end{cases}\left(a;b\ge0\right)}\) thì

\(\Rightarrow b^2-a^2=x^2-3x+2\)

Làm nốt 

12 tháng 10 2019

b. Câu hỏi của Lê Đức Anh - Toán lớp 9 - Học toán với OnlineMath

17 tháng 1 2017

Nhìn không đủ chán rồi không dám động vào

17 tháng 1 2017

Viết đề kiểu gì v @@

11 tháng 7 2019

ĐK \(x\ge-2\)

PT <=> \(2\left(x^2-x+6\right)=5\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}\left(1\right)\)

Đặt \(\sqrt{x+2}=a;\sqrt{x^2-2x+4}=b\left(a,b\ge0\right)\)

=> \(b^2+a^2=x^2-x+6\)

Khi đó (1)

<=> \(2\left(a^2+b^2\right)=5ab\)

<=> \(2a^2-5ab+2b^2=0\)

<=> \(\orbr{\begin{cases}a=2b\\a=\frac{1}{2}b\end{cases}}\)

\(a=2b\)=> \(\sqrt{x+2}=2\sqrt{x^2-2x+4}\)

<=> \(4\left(x^2-2x+4\right)=x+2\)

<=> \(4x^2-9x+14=0\)vô nghiệm 

\(b=2a\)=> \(\sqrt{x^2-2x+4}=2\sqrt{x+2}\)

<=> \(x^2-2x+4=4\left(x+2\right)\)

<=> \(x^2-6x-4=0\)

=> \(x=3\pm\sqrt{13}\)(tm ĐKXĐ )

Vậy \(x=3\pm\sqrt{13}\)

13 tháng 7 2016

a) 4

b) 10

c)4