Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>2/3-1/3x+1/2-x-1/2=5
=>-4/3x+2/3=5
=>-4/3x=13/3
=>x=-13/4
b: \(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=0\\x-\dfrac{3}{4}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=\dfrac{3}{4}\end{matrix}\right.\)
c: =>1/3x+3/5x+3/5=0
=>14/15x=-3/5
=>x=-3/5:14/15=-3/5x15/14=-45/70=-9/14
d: =>x>8/2
e: =>x:1/45=1/2
=>x=1/90
g: =>1/2:x=-2/15
=>x=-1/2:2/15=-15/4
a) tính thường
b) \(\left(x-1\right)\left(x+2\right)< 0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1>0\\x+2< 0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>1\\x< -2\end{cases}}\Leftrightarrow1< x< -2\left(ktm\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x-1< 0\\x+2>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< 1\\x>-2\end{cases}}\Leftrightarrow-2< x< 1\left(tm\right)\)
vậy
c)\(\left(x+\frac{3}{5}\right)\left(x+1\right)< 0\Leftrightarrow\orbr{\begin{cases}x+\frac{3}{5}< 0\\x+1>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< -\frac{3}{5}\\x>-1\end{cases}}\Leftrightarrow-1< x< -\frac{3}{5}\left(tm\right)\)
d) \(\left(x-\frac{1}{3}\right)\left(x+\frac{2}{5}\right)>0\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{1}{3}>0\\x+\frac{2}{5}>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>\frac{1}{3}\\x>-\frac{2}{5}\end{cases}}\Leftrightarrow x>\frac{1}{3}\left(tm\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{1}{3}< 0\\x+\frac{2}{5}< 0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< \frac{1}{3}\\x< -\frac{2}{5}\end{cases}}\Leftrightarrow x< \frac{-2}{5}\left(tm\right)\)
vậy ...
a) 5/2 - x + 4/5 = 2/3 + 4/7
<=> 33/10 - x = 26/21
<=> x = 433/210
b) ( x - 1 )( x + 2 ) < 0 ( cái " x " kia là nhân à :v )
Xét 2 trường hợp
1.\(\hept{\begin{cases}x-1>0\\x+2< 0\end{cases}}\Rightarrow\hept{\begin{cases}x>1\\x< -2\end{cases}}\)( loại )
2. \(\hept{\begin{cases}x-1< 0\\x+2>0\end{cases}}\Rightarrow\hept{\begin{cases}x< 1\\x>-2\end{cases}}\Rightarrow-2< x< 1\)
Vậy -2 < x < 1
c) ( x + 3/5 )( x + 1 ) < 0
Xét hai trường hợp :
1. \(\hept{\begin{cases}x+\frac{3}{5}< 0\\x+1>0\end{cases}}\Rightarrow\hept{\begin{cases}x< -\frac{3}{5}\\x>-1\end{cases}}\Rightarrow-1< x< -\frac{3}{5}\)
2. \(\hept{\begin{cases}x+\frac{3}{5}>0\\x+1< 0\end{cases}}\Rightarrow\hept{\begin{cases}x>-\frac{3}{5}\\x< -1\end{cases}}\)( loại )
Vậy -1 < x < -3/5
d) ( x - 1/3 )( x + 2/5 ) > 0
Xét hai trường hợp :
1.\(\hept{\begin{cases}x-\frac{1}{3}>0\\x+\frac{2}{5}>0\end{cases}}\Rightarrow\hept{\begin{cases}x>\frac{1}{3}\\x>-\frac{2}{5}\end{cases}}\Rightarrow x>\frac{1}{3}\)
2.\(\hept{\begin{cases}x-\frac{1}{3}< 0\\x+\frac{2}{5}< 0\end{cases}}\Rightarrow\hept{\begin{cases}x< \frac{1}{3}\\x< -\frac{2}{5}\end{cases}\Rightarrow}x< -\frac{2}{5}\)
Vây \(\orbr{\begin{cases}x>\frac{1}{3}\\x< -\frac{2}{5}\end{cases}}\)
1.
$(3^2-2^3)x+3^2.2^2=4^2.3$
$\Leftrightarrow x+36=48$
$\Leftrightarrow x=48-36=12$
2.
$x^5-x^3=0$
$\Leftrightarrow x^3(x^2-1)=0$
$\Leftrightarrow x^3(x-1)(x+1)=0$
$\Leftrightarrow x^3=0$ hoặc $x-1=0$ hoặc $x+1=0$
$\Leftrightarrow x=0$ hoặc $x=\pm 1$
3.
$(x-1)^2+(-3)^2=5^2(-1)^{100}$
$\Leftrightarrow (x-1)^2+9=25$
$\Leftrightarrow (x-1)^2=25-9=16=4^2=(-4)^2$
$\Rightarrow x-1=4$ hoặc $x-1=-4$
$\Leftrightarrow x=5$ hoặc $x=-3$
4.
$(2x-1)^2-(2x-1)=0$
$\Leftrightarrow (2x-1)(2x-1-1)=0$
$\Leftrightarrow (2x-1)(2x-2)=0$
$\Leftrightarrow 2x-1=0$ hoặc $2x-2=0$
$\Leftrightarrow x=\frac{1}{2}$ hoặc $x=1$
$\Lef
`@` `\text {Ans}`
`\downarrow`
\((3^2-2^3)x+3^2.2^2=4^2.3\)
`=> x + (3*2)^2 = 48`
`=> x+6^2 = 48`
`=> x + 36 = 48`
`=> x = 48 - 36`
`=> x=12`
Vậy, `x=12`
\(x^5-x^3=0\)
`=> x^3(x^2 - 1)=0`
`=>`\(\left[{}\begin{matrix}x^3=0\\x^2-1=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=0\\x^2=1\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=0\\x=\pm1\end{matrix}\right.\)
Vậy, `x \in {0; +- 1 }`
\(\left(x-1\right)^2+\left(-3\right)^2=5^2\cdot\left(-1\right)^{100}\)
`=> (x-1)^2 + 9 = 25*1`
`=> (x-1)^2 + 9 = 25`
`=> (x-1)^2 = 25 - 9`
`=> (x-1)^2 = 16`
`=> (x-1)^2 = (+-4)^2`
`=>`\(\left[{}\begin{matrix}x-1=4\\x-1=-4\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=4+1\\x=-4+1\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)
Vậy, `x \in {5; -3}`
\((2x-1)^2-(2x-1)=0\)
`=> (2x-1)(2x-1) - (2x-1)=0`
`=> (2x-1)(2x-1-1)=0`
`=>`\(\left[{}\begin{matrix}2x-1=0\\2x-2=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}2x=1\\2x=2\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=1\end{matrix}\right.\)
Vậy, `x \in {1; 1/2}`
a) \(\frac{2}{3}-\frac{1}{3}\left(x-\frac{3}{2}\right)-\frac{1}{2}\left(2x+1\right)=5\)
\(\Leftrightarrow-\frac{1}{3}\left(x-\frac{3}{2}\right)-\frac{1}{2}\left(2x+1\right)=5-\frac{2}{3}\)
\(\Leftrightarrow-\frac{1}{3}\left(x-\frac{3}{2}\right)-\frac{1}{2}\left(2x+1\right)=\frac{13}{3}\)
\(\Leftrightarrow-\frac{1}{3}\left(x-\frac{3}{2}\right).6-\frac{1}{2}\left(2x-1\right).6=\frac{13}{3}.6\)
\(\Leftrightarrow-2\left(x-\frac{3}{2}\right)-2\left(2x+1\right)=26\)
\(\Leftrightarrow-8x=26\)
\(\Leftrightarrow x=\frac{26}{-8}=\frac{13}{-4}\)
\(\Rightarrow x=-\frac{13}{4}\)
b) \(\left(x+\frac{1}{2}\right)\left(x-\frac{3}{4}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{2}=0\\x-\frac{3}{4}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{3}{4}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{3}{4}\end{cases}}\)
c) \(\frac{1}{3}.x+\frac{2}{5}-\left(x+1\right)=0\)
\(\Leftrightarrow\frac{1}{3}.x+\frac{2}{5}-x-1=0\)
\(\Leftrightarrow\frac{x}{3}+\frac{2}{5}-x-1=0\)
\(\Leftrightarrow-\frac{2x}{3}=\frac{3}{5}\)
\(\Leftrightarrow x=\frac{3}{5}:-\frac{2}{3}\)
\(\Leftrightarrow x=-\frac{9}{10}\)
\(\Rightarrow x=-\frac{9}{10}\)
\(a,\frac{1}{3}+\frac{1}{2}:x=\frac{1}{5}\)
\(\Leftrightarrow\frac{1}{2}:x=\frac{1}{5}-\frac{1}{3}\)
\(\Leftrightarrow\frac{1}{2}:x=\frac{3}{15}-\frac{5}{15}\)
\(\Leftrightarrow\frac{1}{2}:x=\frac{-2}{15}\)
\(\Leftrightarrow x=\frac{1}{2}:\frac{-15}{2}=\frac{-15}{4}\)
\(b,\frac{1}{3}x+\frac{2}{5}\left[x+1\right]=0\)
\(\Leftrightarrow\frac{1}{3}x+\frac{2}{5}x+\frac{2}{5}=0\)
\(\Leftrightarrow\frac{11}{15}x=-\frac{2}{5}\Leftrightarrow x=\frac{-2}{5}:\frac{11}{15}=\frac{-2}{5}\cdot\frac{15}{11}=\frac{-2}{1}\cdot\frac{3}{11}=\frac{-6}{11}\)
`1/3 . x + 2/5 . (x+1) = 0`
`=> 1/3 . x + 2/5 x + 2/5 = 0`
`=> (1/3 + 2/5) . x + 2/5 = 0`
`=> 11/15 . x = -2/5`
`=> x = -2/5 : 11/5`
`=> x = -6/11`
Vậy ...
\(\dfrac{1}{3}x+\dfrac{2}{5}\left(x+1\right)=0\)
\(\dfrac{1}{3}x+\dfrac{2}{5}x+\dfrac{2}{5}=0\)
\(\left(\dfrac{1}{3}+\dfrac{2}{5}\right)x=-\dfrac{2}{5}\)
\(\dfrac{11}{15}x=-\dfrac{2}{5}\)
\(x=-\dfrac{2}{5}:\dfrac{11}{15}\)
\(x=-\dfrac{6}{11}\)