K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2017

\(pt\Leftrightarrow\sqrt{x}+2\sqrt{x+3}+\sqrt{x^2+3}=7\)

\(\Leftrightarrow\sqrt{x}-1+2\sqrt{x+3}-4+\sqrt{x^2+3}-2=0\)

\(\Leftrightarrow\dfrac{x-1}{\sqrt{x}+1}+\dfrac{4\left(x+3\right)-4}{2\sqrt{x+3}+4}+\dfrac{x^2+3-4}{\sqrt{x^2+3}+2}=0\)

\(\Leftrightarrow\dfrac{x-1}{\sqrt{x}+1}+\dfrac{4x+3-4}{2\sqrt{x+3}+4}+\dfrac{x^2-1}{\sqrt{x^2+3}+2}=0\)

\(\Leftrightarrow\dfrac{x-1}{\sqrt{x}+1}+\dfrac{4\left(x-1\right)}{2\sqrt{x+3}+4}+\dfrac{\left(x-1\right)\left(x+1\right)}{\sqrt{x^2+3}+2}=0\)

\(\Leftrightarrow\left(x-1\right)\left(\dfrac{x-1}{\sqrt{x}+1}+\dfrac{4}{2\sqrt{x+3}+4}+\dfrac{x+1}{\sqrt{x^2+3}+2}\right)=0\)

Dễ thấy: \(\dfrac{x-1}{\sqrt{x}+1}+\dfrac{4}{2\sqrt{x+3}+4}+\dfrac{x+1}{\sqrt{x^2+3}+2}>0\)

\(\Rightarrow x-1=0\Rightarrow x=1\)

4) Ta có: \(\left(x+3\right)\cdot\sqrt{10-x^2}=x^2-x-12\)

\(\Leftrightarrow\left(x+3\right)\cdot\sqrt{10-x^2}-\left(x-4\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(\sqrt{10-x^2}-x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\\sqrt{10-x^2}=x-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\10-x^2=x^2-8x+16\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x^2-8x+16-10+x^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\2x^2-8x+6=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\2\left(x^2-4x+3\right)=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\\left(x-1\right)\left(x-3\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=1\\x=3\end{matrix}\right.\)

7 tháng 8 2019

\(\sqrt{x^2.\left(x^2+1\right)+1}+\sqrt{3}.\left(x^2+1\right)=3\sqrt{3}.x\)

\(\Leftrightarrow\sqrt{x^4+x^2+1}+\sqrt{3}.x^2+\sqrt{3}=3\sqrt{3}.x\)

\(\Leftrightarrow\sqrt{x^4+x^2+1}+\sqrt{3}=3\sqrt{3}.x-\sqrt{3}.x^2\)

\(\Leftrightarrow\sqrt{x^4+x^2+1}=3\sqrt{3}.x-\sqrt{3}.x^2-\sqrt{3}\)

\(\Leftrightarrow\left(\sqrt{x^4+x^2+1}\right)^2=\left(3\sqrt{3}.x-\sqrt{3}.x^2-\sqrt{3}\right)\)

\(\Leftrightarrow x^4+x^2+1=-18x^3+3x^4+33x^2-18x+3\)

\(\Leftrightarrow x^4+x^2+1+18x^3-3x^4-33x^2+18x-3=0\)

\(\Leftrightarrow-2x^4-32x^2-2+18x^3+18x=0\)

\(\Leftrightarrow-2\left(x^4+16x^2+1-9x^3-9x\right)=0\)

\(\Leftrightarrow-2\left(x^3-8x^2+8x-1\right)\left(x-1\right)=0\)

\(\Leftrightarrow-2\left(x^2-7x+1\right)\left(x-1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(x^2-7x+1\right)\left(x-1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(x^2-7x+1\right)\left(x-1\right)^2=0\)

Nhưng vì \(x^2-7x+1\ne0\)nên:

\(x-1=0\Rightarrow x=1\)

\(\Rightarrow x=1\)

12 tháng 8 2017

toán lớp 9 thì ai mà biết chỉ lớp 5 thôi

đáp án là : 0 bít !

12 tháng 8 2017

sống bớt xàm đi bạn trẻ

14 tháng 7 2017

\(\sqrt{x+8}=\sqrt{3x+2}+\sqrt{x+3}\) dkxd \(\left\{{}\begin{matrix}x\ge-8\\x\ge\\x\ge-\dfrac{2}{3}\end{matrix}\right.-3\)=>x\(\ge\)\(\dfrac{-2}{3}\)

\(x+8=3x+2+x+3+2\sqrt{\left(3x+2\right)\left(x+3\right)}\)

\(x+8=4x+5+2\sqrt{\left(3x+2\right)\left(x+3\right)}\)

\(x+8-4x-5=2\sqrt{\left(3x+2\right)\left(x+3\right)}\)

-3x+3=\(2\sqrt{\left(3x+2\right)\left(x+3\right)}\)

\(\left\{{}\begin{matrix}-3\left(x-3\right)\ge0\\\left(-3x+3\right)^2=4.\left(3x+2\right)\left(x+3\right)\end{matrix}\right.\)

Chắc tới đây bạn làm đc rồi nhỉ

4 tháng 10 2017

\(\sqrt{\left(x+2\right)\left(x-1\right)}+3\sqrt{x+2}=2\left(x+2\right)\)(đk bn tự xd nhé)

\(\Leftrightarrow\sqrt{x+2}\left(\sqrt{x-1}+3-2\sqrt{x+2}\right)\)=0

\(\Leftrightarrow\orbr{\begin{cases}x=-2\\\sqrt{x-1}+3=2\sqrt{x+2}\left(1\right)\end{cases}}\)

giai (1) bn se co x=2 kl x=+-2

\(\Leftrightarrow\left(3-x\right)\sqrt{x-1}+\sqrt{5-2x}=\sqrt{\left[\left(x-3\right)^2+1\right]\left(4-x\right)}\)

đặt 3-x=a;\(\sqrt{x-1}=b;\sqrt{5-2x}=c\Rightarrow b^2+c^2=4-x\)

\(\Leftrightarrow ab+c=\sqrt{\left(a^2+1\right)\left(b^2+c^2\right)}\)

<=>a2b2+2abc+c2=a2b2+b2+a2c2+c2

<=>b2-2abc+a2c2=0

<=>(b-ac)2=0

<=>b=ac

đến đây thì dễ rồi

dùng bđt xem sao