Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì vai trò bình đẳng của \(x,y\) trong phương trình trên, nên ta có thể đặt giả thiết \(x\ge y\)
Từ phương trình trên, suy ra \(x< 2007\) hay \(x+1\le2007\)
Khi đó, \(2007^{2005}\ge\left(x+1\right)^{2005}>x^{2005}+2005.x^{2004}\)
tức là \(2007^{2005}-x^{2005}>2005.x^{2004}\)
nên \(y^{2005}>2005.x^{2004}\ge2005.y^{2004}\)
\(\Rightarrow\) \(y>2005\)
Do đó, \(2007>x\ge y>2005\)
Vậy, \(x=2006\) và \(y=2006\)
Thử lại không thỏa mãn đẳng thức trên.
Vậy, pt vô nghiệm
\(2x^2-y^2+xy-3x+3y-3=0\)
\(\Leftrightarrow2x^2-xy+x+2xy-y^2+y-4x+2y-2=1\)
\(\Leftrightarrow\left(2x-y+1\right)\left(x+y-2\right)=1\)
Từ đây bạn xét bảng giá trị và thu được kết quả cuối cùng là: \(\left(x,y\right)=\left(1,2\right)\).
bối rối ở chỗ 2x3 nếu mũ 2 thì PP tìm nghiệm nguyên - Tuần 12 - Trần Văn Mười - Website của Trần Văn Mười
Câu hỏi của Minh Triều - Toán lớp 9 - Học toán với OnlineMath
Giải phương trình với nghiệm nguyên - Giáo Án, Bài Giảng
Mũ 3 dg mò nghiệm :3
để xem <(") <(")