Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này làm khá tắt chỗ 3 điểm cực trị, mình trình bày lại để bạn dễ hiểu nhé!
.......
Để y' = 0\(\Leftrightarrow\left[{}\begin{matrix}x=1\\f'\left(\left(x-1\right)^2+m\right)=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\left(x-1\right)^2+m=-1\\\left(x-1\right)^2+m=3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\\left(x-1\right)^2=-1-m\left(1\right)\\\left(x-1\right)^2=3-m\left(2\right)\end{matrix}\right.\)
Để hàm số có 3 điểm cực trị thì y' = 0 có 3 nghiệm phân biệt.
Ta có 2 trường hợp.
+) \(TH_1:\) (1) có nghiệm kép x = 1 hoặc vô nghiệm và (2) có hai nghiệm phân biệt khác 1.
\(\Rightarrow\left[{}\begin{matrix}-1-m\le0\\3-m>0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}m\ge-1\\m< 3\end{matrix}\right.\) \(\Leftrightarrow-1\le m< 3\)
+) \(TH_2:\) (2) có nghiệm kép x = 1 và (2) có một nghiệm phân biệt khác 1.
\(\Rightarrow\left[{}\begin{matrix}-1-m>0\\3-m\le0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}m< -1\\m\ge3\end{matrix}\right.\) \(\Leftrightarrow m\in\varnothing\)
\(\Rightarrow-1\le m< 3\Rightarrow S=\left\{-1;0;1;2\right\}\)
Do đó tổng các phần tử của S là \(-1+0+1+2=2\)
\(\int cos^3xdx=\int cos^2x.cosxdx=\int\left(1-sin^2x\right)d\left(sinx\right)\)
\(=sinx-\dfrac{1}{3}sin^3x+C\)
\(y'=\dfrac{1-m^2}{\left(x+1\right)^2}\)
Hàm nghịch biến trên mỗi khoảng xác định khi:
\(1-m^2< 0\Rightarrow m^2>1\Rightarrow\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\)
\(\Rightarrow\) có \(2019-2+1=2018\) giá trị nguyên của m thỏa mãn
18.
\(y=a\) là tiệm cận ngang \(\Rightarrow a=-1\)
\(x=-c\) là tiệm cận đứng \(\Rightarrow c=-1\)
\(\Rightarrow y=\dfrac{-x+b}{x-1}\)
Đồ thị hàm số đi qua điểm \(\left(2;0\right)\Rightarrow\dfrac{-2+b}{2-1}=0\Rightarrow b=2\)
\(\Rightarrow T=0\)
19.
\(P=\dfrac{a^{\sqrt{2022}+1+2-\sqrt{2022}}}{a^{\left(\sqrt{2}-2\right)\left(\sqrt{2}+2\right)}}=\dfrac{a^3}{a^{-2}}=a^5\)
20.
\(T=2(a+b)^{-1}.(ab)^{\frac{1}{2}}\left[1+\dfrac{1}{4}\left(\sqrt{\dfrac{a}{b}}-\sqrt{\dfrac{b}{a}} \right)^2 \right]^\frac{1}{2}\)
\(=2(a+b)^{-1}(ab)^{\frac{1}{2}}\)\(\left[1+\dfrac{1}{4}.\dfrac{\left(a-b\right)^2}{ab}\right]^{\dfrac{1}{2}}\)
\(=2(a+b)^{-1}(ab)^{\frac{1}{2}}\)\(\left[\dfrac{a^2+b^2+2ab}{4ab}\right]^{\dfrac{1}{2}}\)
\(=2(a+b)^{-1}(ab)^{\frac{1}{2}}.\dfrac{a+b}{2(ab)^{\frac{1}{2}}}\)
\(=1\)
21.
Do số mũ \(\dfrac{1}{3}\) không nguyên nên:
ĐKXĐ: \(3x^2-1>0\Rightarrow x\in\left(-\infty;-\dfrac{1}{\sqrt{3}}\right)\cup\left(\dfrac{1}{\sqrt{3}};+\infty\right)\)
ĐKXĐ: \(x>0\)
\(log_2^2x-m.log_2x-log_2x+m=0\)
\(\Leftrightarrow log_2x\left(log_2x-m\right)-\left(log_2x-m\right)=0\)
\(\Leftrightarrow\left(log_2x-1\right)\left(log_2x-m\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x_1=2\\x_2=2^m\end{matrix}\right.\)
TH1: \(x_1=x_2^2\Leftrightarrow2=\left(2^m\right)^2=2^{2m}\Rightarrow2m=1\Rightarrow m=\dfrac{1}{2}\)
TH2: \(x_2=x_1^2\Rightarrow2^m=2^2\Rightarrow m=2\)
\(\Rightarrow2+\dfrac{1}{2}=\dfrac{5}{2}\)