Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có A=1/1^2+1/2^2+1/3^2+...+1/50^2
A=1+1/2^2+1/3^2+...+1/50^2
A<1+1/1*2+1/2*3+...+1/49*50
A<1+1/1-1/2+1/2-1/3+...+1/49-1/50
A<1+1-1/50
A<2-1/50<2
Vậy A<2
#)Giải : (Đg rảnh nên làm lun :v)
Ta có : \(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{50}-\frac{1}{51}=1-\frac{1}{51}=\frac{50}{51}< 2\)
\(\Rightarrow A< \frac{50}{51}< 2\)
\(\Rightarrow A< 2\left(đpcm\right)\)
Ta có A<1/12+1/1.2+1/2.3+1/3.4+...+1/49.50
A<1+1-1/2+1/2-1/3+1/3-1/4+1/49-1/50
A<2-1/50<2(đpcm)
Chuyển đổi \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.....=\frac{1}{49.50}\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{4}+\frac{1}{5}-.......+\frac{1}{49}-\frac{1}{50}\)
\(A=\frac{1}{1}-\left(-\frac{1}{2}+\frac{1}{2}\right)+\left(-\frac{1}{3}+\frac{1}{3}\right)+\left(-\frac{1}{4}+\frac{1}{4}\right)+.......+\left(-\frac{1}{49}+\frac{1}{49}\right)-\frac{1}{50}\)
\(A=\frac{1}{1}-0+0+0+0+.......+0+0-\frac{1}{50}\)
\(A=\frac{1}{1}-\frac{1}{50}=\frac{49}{50}\)
Có \(\frac{49}{50}<2\) nên \(A<2\)
GIẢI
A=1/12 +1/22 + 1/32 + ....+ 1/502
A<1+1/1.2+1/2.3+....+1/49.50
A<1+1-1/2+1/2-1/3+...+1/49-1/50
A<2-1/50<2
vậy A<2