Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\hept{\begin{cases}x^2+y^2+x+y=4\\x\left(x+y+1\right)+y\left(y+1\right)=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2+y^2+x+y=4\\x^2+xy+x+y^2+y=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2+y^2+x+y=4\\x^2+y^2+x+y+xy=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2+y^2+x+y=4\\xy=-2\end{cases}}\)(Trừ 2 pt cho nhau)
\(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2+x+y-2xy=4\\xy=-2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2+x+y+4=4\\xy=-2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)\left(x+y+1\right)=0\\xy=-2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y=0\\xy=-2\end{cases}\left(h\right)\hept{\begin{cases}x+y+1=0\\xy=-2\end{cases}}}\)
\(\hept{\begin{cases}x^3+y^3=1\\2y^3+x^2y+3xy^2=3\end{cases}\Leftrightarrow\hept{\begin{cases}3x^3+3y^3=3\\2y^3+x^2y+3xy^2=3\end{cases}}}\)
\(\Rightarrow3x^3-x^2y-3xy^2+y^3=0\)
\(\Leftrightarrow x^2\left(3x-y\right)-y^2\left(3x-y\right)=0\)
\(\Leftrightarrow\left(3x-y\right)\left(x-y\right)\left(x+y\right)=0\)
đến đây biểu diễn y thae x rồi thay vào 1 trong 2 pt là ra
mn ơi giúp e