K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2022

ráng nhìn ha

undefined

undefined

25 tháng 5 2022

ui chữ cj đẹp ghê

=>9x+4y=360 và 36/x-36/y=1/2

=>4y=360-9x và 36/x-36/y=1/2

=>y=90-2,25x và \(\dfrac{36}{x}-\dfrac{36}{90-2,25x}=\dfrac{1}{2}\)

=>\(\dfrac{3240-81x-36x}{x\left(90-2,25x\right)}=\dfrac{1}{2}\)

=>90x-2,25x^2=2(3240-117x)

=>-2,25x^2+90x-6840+234x=0

=>x=118,3 hoặc x=25,7

=>y=-176,175 hoặc y=32,175

18 tháng 5 2017

Trình bày nv bạn nhưng k bít mình làm có đúng k:

Hpt có ng duy nhất 

<=> 2/m khác m/2 

<=> m khác 2 va -2

Ta có hệ đã cho tương đương vs:\(\hept{\begin{cases}2x-2y=0\\\left(m+2\right)Y=1\end{cases}}\)

<=>\(\hept{\begin{cases}2x=2y\\y=\frac{1}{m+2}\end{cases}}\)

<=>x=y=1/( m+2).

Theo bài ra thì x,y là các số nguyên

 =>1/(m+2) nguyên

 => m+2 thuộc Ư (1)

=> m+2 thuộc {1;-1}

m+2=1=>m=-1(Tm)

m+2=-1=>m=-3(Tm)

Vậy....

=>16x+9y=840 và 210/x-210/y=7/4

=>16x=840-9y và 30/x-30/y=1/4

=>x=-9/16y+52,5 và (30y-30x)=xy/4

=>xy=120y-120x

=>y(-9/16y+52,5)=120y-120(-9/16y+52,5)

=>-9/16y^2+52,5y-120y+120(-9/16y+52,5)=0

=>-9/16y^2-67,5y-67,5y+6300=0

=>y=40 hoặc y=-280

=>x=30 hoặc x=210

14 tháng 5 2022

`x^2+\sqrt{x^2+20}=22`

`<=>x^2+20+\sqrt{x^2+20}-42=0`

Đặt `\sqrt{x^2+20}=t` `(t > 0)` khi đó ta có ptr:

      `t^2+t-42=0`

`<=>t^2+7t-6t-42=0`

`<=>t(t+7)-6(t+7)=0`

`<=>(t+7)(t-6)=0`

`<=>` $\left[\begin{matrix} t=-7\text{ (ko t/m)}\\ t=6\text{ (t/m)}\end{matrix}\right.$

    `@ t=6=>\sqrt{x^2+20}=6`

            `<=>x^2+20=36`

            `<=>x^2=16`

            `<=>x=+-4`

Vậy `S={+-4}`

11 tháng 10 2023

Để giải phương trình \(x^2 + \sqrt{x^2 + 20} = 22\), bạn có thể làm theo các bước sau:

1. Trừ 22 từ cả hai bên của phương trình để đưa các thuật ngữ chứa x về cùng một bên:

   \(x^2 + \sqrt{x^2 + 20} - 22 = 0\)

2. Bây giờ, chúng ta có một phương trình bậc hai dạng căn bậc hai. Để giải phương trình này, ta sẽ giải quyết từng phần:

   \(x^2 + \sqrt{x^2 + 20} = 22\)

3. Bây giờ, ta sẽ loại bỏ căn bậc hai bằng cách đưa nó về phía bên kia của phương trình:

   \(x^2 = 22 - \sqrt{x^2 + 20}\)

4. Bình phương cả hai phía của phương trình:

   \(x^4 = (22 - \sqrt{x^2 + 20})^2\)

5. Giải phương trình bậc bốn này:

   \(x^4 = (22 - \sqrt{x^2 + 20})^2\)

   \(x^4 = 484 - 44\sqrt{x^2 + 20} + (x^2 + 20)\)

6. Đưa các thuật ngữ chứa \(x^2\) về cùng một bên:

   \(x^4 - x^2 - 464 = - 44\sqrt{x^2 + 20}\)

7. Bình phương cả hai phía của phương trình:

   \((x^4 - x^2 - 464)^2 = (- 44\sqrt{x^2 + 20})^2\)

   \(x^8 - 2x^6 - 23x^4 + 912x^2 + 464^2 = 1936x^2 + 20\)

8. Rút gọn và sắp xếp phương trình:

   \(x^8 - 2x^6 - 23x^4 + 1916x^2 + 464^2 - 20 = 0\)

9. Đây là một phương trình bậc tám, và giải nó có thể phức tạp. Bạn có thể sử dụng phần mềm máy tính hoặc các công cụ trực tuyến để tìm các nghiệm của phương trình này. Giải nghiệm này là một phương trình bậc cao và cần một giải thuật đặc biệt.

1 tháng 12 2021

\(\left\{{}\begin{matrix}mx-y=2\\x+my=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+m\left(mx-2\right)=1\\y=mx-2\end{matrix}\right.\\ \Leftrightarrow x\left(m^2+1\right)=2m+1\Leftrightarrow x=\dfrac{2m+1}{m^2+1}\\ \Leftrightarrow y=\dfrac{m\left(2m+1\right)}{m^2+1}-2=\dfrac{2m^2+m-2m^2-2}{m^2+1}=\dfrac{m-2}{m^2+1}\)

Ta có \(x+y=1\Leftrightarrow\dfrac{2m+1+m-2}{m^2+1}=1\)

\(\Leftrightarrow3m-1=m^2+1\\ \Leftrightarrow m^2-3m+2=0\\ \Leftrightarrow\left[{}\begin{matrix}m=1\\m=2\end{matrix}\right.\)