Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) đk: \(x>2012;y>2013\)
pt \(\frac{16}{\sqrt{x-2012}}+\sqrt{x-2012}+\frac{1}{\sqrt{y-2013}}+\sqrt{y-2013}=10\)
\(VT\ge2\sqrt{\frac{16}{\sqrt{x-2012}}.\sqrt{x-2012}}+2\sqrt{\frac{1}{\sqrt{y-2013}}.\sqrt{y-2013}}=8+2=10\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}x-2012=16\\y-2013=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2028\\y=2014\end{cases}}\)
Ta có : \(\left(x+\sqrt{x^2+2017}\right)\left(-x+\sqrt{x^2+2017}\right)=2017\left(1\right)\)
\(\left(y+\sqrt{y^2+2017}\right)\left(-y+\sqrt{y^2+2017}\right)=2017\left(2\right)\)
nhân theo vế của ( 1 ) ; ( 2 ) , ta có :
\(2017\left(-x+\sqrt{x^2+2017}\right)\left(-y+\sqrt{y^2+2017}\right)=2017^2\)
\(\Rightarrow\left(-x+\sqrt{x^2+2017}\right)\left(-y+\sqrt{y^2+2017}\right)=2017\)
rồi bạn nhân ra , kết hợp với việc nhân biểu thức ở phần trên xong cộng từng vế , cuối cùng ta đc :
\(xy+\sqrt{\left(x^2+2017\right)\left(y^2+2017\right)}=2017\)
\(\Leftrightarrow\sqrt{\left(x^2+2017\right)\left(y^2+2017\right)}=2017-xy\)
\(\Leftrightarrow x^2y^2+2017\left(x^2+y^2\right)+2017^2=2017^2-2\cdot2017xy+x^2y^2\)
\(\Rightarrow x^2+y^2=-2xy\Rightarrow\left(x+y\right)^2=0\Rightarrow x=-y\)
A = 2017
( phần trên mk lười nên không nhân ra, bạn giúp mk nhân ra nha :) )
2/ \(\frac{\sqrt{x-2011}-1}{x-2011}+\frac{\sqrt{y-2012}-1}{y-2012}+\frac{\sqrt{z-2013}-1}{z-2013}=\frac{3}{4}\)
\(\Leftrightarrow\frac{4\sqrt{x-2011}-4}{x-2011}+\frac{4\sqrt{y-2012}-4}{y-2012}+\frac{4\sqrt{z-2013}-4}{z-2013}=3\)
\(\Leftrightarrow\left(1-\frac{4\sqrt{x-2011}-4}{x-2011}\right)+\left(1-\frac{4\sqrt{y-2012}-4}{y-2012}\right)+\left(1-\frac{4\sqrt{z-2013}-4}{z-2013}\right)=0\)
\(\Leftrightarrow\left(\frac{x-2011-4\sqrt{x-2011}+4}{x-2011}\right)+\left(\frac{y-2012-4\sqrt{y-2012}+4}{y-2012}\right)+\left(\frac{z-2013-4\sqrt{z-2013}+4}{z-2013}\right)=0\)
\(\Leftrightarrow\frac{\left(\sqrt{x-2011}-2\right)^2}{x-2011}+\frac{\left(\sqrt{y-2012}-2\right)^2}{y-2012}+\frac{\left(\sqrt{z-2013}-2\right)^2}{z-2013}=0\)
Dấu = xảy ra khi \(\sqrt{x-2011}=2;\sqrt{y-2012}=2;\sqrt{z-2013}=2\)
\(\Leftrightarrow x=2015;y=2016;z=2017\)
Bài 2:
a: \(\Leftrightarrow\left\{{}\begin{matrix}2-x+y-3x-3y=5\\3x-3y+5x+5y=-2\end{matrix}\right.\)
=>-4x-2y=3 và 8x+2y=-2
=>x=1/4; y=-2
b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{y-1}=1\\\dfrac{1}{x-2}+\dfrac{1}{y-1}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y-1=5\\\dfrac{1}{x-2}=1-\dfrac{1}{5}=\dfrac{4}{5}\end{matrix}\right.\)
=>y=6 và x-2=5/4
=>x=13/4; y=6
c: =>x+y=24 và 3x+y=78
=>-2x=-54 và x+y=24
=>x=27; y=-3
d: \(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x-1}-6\sqrt{y+2}=4\\2\sqrt{x-1}+5\sqrt{y+2}=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-11\sqrt{y+2}=-11\\\sqrt{x-1}=2+3\cdot1=5\end{matrix}\right.\)
=>y+2=1 và x-1=25
=>x=26; y=-1
a, Áp dụng bất đẳng thức Holder cho 2 bộ số \(\left(x,y,z\right)\left(3;3;3\right)\) ta có:
\(\left(x+3\right)\left(y+3\right)\left(z+3\right)\ge\left(\sqrt[3]{xyz}+\sqrt[3]{3.3.3}\right)^3=\left(\sqrt[3]{xyz}+3\right)\)
\(\sqrt[3]{\left(x+3\right)\left(y+3\right)\left(z+3\right)}\ge3+\sqrt[3]{xyz}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z\)
\(\Rightarrow\sqrt{x}+\sqrt{y}+\sqrt{z}=3\sqrt{x}=\sqrt{2017}\)
\(\Rightarrow x=\frac{\sqrt{2017}}{3}\)
\(\Rightarrow\left(x,y,z\right)=\left(\frac{\sqrt{2017}}{3},\frac{\sqrt{2017}}{3},\frac{\sqrt{2017}}{3}\right)\)
P/s: Không chắc cho lắm ạ.
Vũ Minh Tuấn, Hoàng Tử Hà, đề bài khó wá, Lê Gia Bảo, Aki Tsuki, Nguyễn Việt Lâm, Lê Thị Thục Hiền,
Học 24h, @tth_new, @Akai Haruma, Nguyễn Trúc Giang, Băng Băng 2k6
Help meeee, please!
thanks nhiều
\(\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2=x+y+z+2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\right)=4\)
mà \(x+y+z=2\Rightarrow\sqrt{xy}+\sqrt{yz}+\sqrt{xz}=1\)----->thay vào
Bạn có thể giải rõ ràng hơn được không? Mình cũng tự làm được đến đoạn này rồi nhưng k biết thay ntn?????
\(\sqrt{x-2}+\sqrt{y+2012}+\sqrt{z-2013}=\dfrac{1}{2}\left(x+y+z\right)\Leftrightarrow2\sqrt{x-2}+2\sqrt{y+2012}+2\sqrt{z-2013}=x+y+z\Leftrightarrow x-2\sqrt{x-2}+y-2\sqrt{y+2012}+z-2\sqrt{z-2013}=0\Leftrightarrow x-2-2\sqrt{x-2}+1+y+2012-2\sqrt{y+2012}+1+z-2013-2\sqrt{z-2013}+1=0\Leftrightarrow\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y+2012}-1\right)^2+\left(\sqrt{z-2013}-1\right)^2=0\Leftrightarrow\)\(\left\{{}\begin{matrix}\sqrt{x-2}-1=0\\\sqrt{y+2012}-1=0\\\sqrt{z-2013}-1=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x-2=1\\y+2012=1\\z-2013=1\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=3\\y=-2011\\z=2014\end{matrix}\right.\)
Vậy x=3;y=-2011;z=2014