K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2015

P2\(=\left(\frac{1-A\sqrt{A}}{1-\sqrt{A}}+\sqrt{A}\right).\left(\frac{1-\sqrt{A}}{1-A}\right)^2\)\(=\left(\frac{1-A\sqrt{A}+\sqrt{A}-A}{1-\sqrt{A}}\right).\frac{\left(1-\sqrt{A}\right)^2}{\left(1-A\right)^2}\)\(=\frac{\left(\sqrt{A}+1\right)\left(1-A\right)}{1-\sqrt{A}}.\frac{\left(1-\sqrt{A}\right)^2}{\left(1-\sqrt{A}\right)^2\left(1+\sqrt{A}\right)^2}\)

\(=\left(\sqrt{A}+1\right)^2.\frac{1}{\left(1+\sqrt{A}\right)^2}=1\)

24 tháng 9 2015

\(=\frac{1+\frac{\sqrt{3}}{2}}{1+\sqrt{\left(\sqrt{0.75}+\sqrt{0.25}\right)^2}}+\frac{1-\frac{\sqrt{3}}{2}}{1-\sqrt{\left(\sqrt{0.75}-\sqrt{0.25}\right)^2}}\)

\(=\frac{1+\frac{\sqrt{3}}{2}}{1+\sqrt{0.75}+\sqrt{0.25}}+\frac{1-\frac{\sqrt{3}}{2}}{1-\sqrt{0.75}+\sqrt{0.25}}\)

TRỤC CĂN THỨC Ở MẪU TA ĐƯỢC

\(=\frac{9+4\sqrt{3}}{33}+\frac{3-\sqrt{3}}{6}\)

Quy đồng ta được

\(=\frac{17-\sqrt{3}}{22}\)

TICK CHO MÌNH NHA BẠN

12 tháng 9 2015

Dặt tử = A 

A^2 = \(x+\sqrt{x^2-y^2}+x-\sqrt{x^2-y^2}-2\sqrt{x^2-x^2+y^2}\)

\(2x-2\sqrt{y^2}=2x-2y=2\left(x-y\right)\)

=> A  = \(\sqrt{2\left(x-y\right)}\)

Lấy tử chia mẫu là xong 

9 tháng 7 2015

a/

ĐK \(x^2-6x+6\ge0\)

\(\text{pt }\Leftrightarrow\left(x^2-6x+6\right)-4\sqrt{x^2-6x+6}+3=0\)

Đặt \(t=\sqrt{x^2-6x+6};t\ge0\)

pt thành \(t^2-4t+3=0\Leftrightarrow t=3\text{ hoặc }t=1\)

\(+t=1\Rightarrow x^2-6x+6=1^2\Leftrightarrow x^2-6x+7=0\Leftrightarrow t=3+\sqrt{2}\text{ hoặc }t=3-\sqrt{2}\)

\(+t=3\Rightarrow x^2-6x+6=3^2\Leftrightarrow x^2-6x-3=0\Leftrightarrow x=3+2\sqrt{3}\text{ hoặc }x=3-2\sqrt{3}\)

Vậy ....

b/

ĐK: \(x^2+3x\ge0\)

\(\left(x+5\right)\left(2-x\right)=3\sqrt{x^2+3x}\Leftrightarrow-\left(x^2+3x\right)-3\sqrt{x^2+3x}+10=0\)

\(\Leftrightarrow\left(\sqrt{x^2+3x}-2\right)\left(\sqrt{x^2+3x}+5\right)=0\)

\(\Leftrightarrow\sqrt{x^2+3x}=2\text{ hoặc }\sqrt{x^2+3x}=-5\text{ (loại)}\)

\(\Leftrightarrow x^2+3x-2^2=0\Leftrightarrow x=1\text{ hoặc }x=-4\)

Vậy ....

9 tháng 7 2015

Đặt cái căn dưới mẫu là a, suy ra căn trên tử là \(\sqrt{3+a}\). Nếu đề chính xác thì biến đổi tương đương nhẹ nhàng là ra :))

9 tháng 7 2015

vui long giai chi tiet
minh hong hiu

\(9-12x+4x^2>0\)

\(\Rightarrow\left(2-2x\right)^2>0\)

\(\Rightarrow2-2x>0\)

\(\Rightarrow-2x>-2\)

\(\Rightarrow x< 1\)

Vậy để A có nghĩa thì \(x< 1\)

B) \(\sqrt{x+2\sqrt{x-1}}\ne0\)

\(x+2\sqrt{x-1}>0\)

\(\Rightarrow x-1+2\sqrt{x-1}+1>0\)

\(\Rightarrow\left(\sqrt{x-1}+1\right)^2>0\)

\(\sqrt{x-1}\ge0\Rightarrow x\ge1\)\(\)

Vậy \(x\ge1\)thì B có nghĩa

C) \(\sqrt{3x-2}.\sqrt{x-1}\ge0\)

\(\orbr{\begin{cases}3x-2\ge0\\x-1\ge0\end{cases}}\Rightarrow\orbr{\begin{cases}x\ge\frac{2}{3}\\x\ge1\end{cases}}\)

Vậy \(x\ge1\)thì C có nghĩa 

21 tháng 7 2019

a)  \(\frac{1}{\sqrt{9-12x+4x^2}}=\frac{1}{\sqrt{\left(2x-3\right)^2}}=\frac{1}{2x-3}\) 

để căn thức A có nghĩa \(\Rightarrow2x-3\ne0\Leftrightarrow x\ne\frac{3}{2}\) 

b)\(\frac{1}{\sqrt{x+2\sqrt{x}+1}}=\frac{1}{\sqrt{\left(\sqrt{x}+1\right)^2}}=\frac{1}{\sqrt{x}+1}\) 

để căn thức B có nghĩa =>  \(\sqrt{x}+1\ne0\) và  \(x\ge0\) hay  \(\sqrt{x}+1>1\Leftrightarrow x=0\) 

Vậy..........