K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2017

hình thang cân cũng có tâm đối xứng m` bạn

đề bài sai rồi

11 tháng 4 2017

Không hình thang cân không có tâm đối xứng nhé bạn!

11 tháng 4 2017

To tưởng t7 ms thi mak 

20 tháng 8 2018

tứ giác có hai trục đối xứng cắt nhau thì các cặp cạnh đối bằng nhau (tính chất các đoạn thẳng đối xứng với nhau qua một đường thẳng). Vậy nó là hình bình hành (1)

Do các cặp cạnh đối song song với nhau mà lại đối xứng với nhau nên các cặp cạnh đối phải song song với trục đối xứng. Hai trục đối xứng vuông góc với nhau nên hai cạnh kề nhau phải vuông góc với nhau (2)

Từ (1) và (2) ta suy ra tứ giác đó là hình chữ nhât (theo định nghĩa)

2 tháng 4 2018

Câu 1)

        \(a\left(a+2\right)+b\left(b-2\right)-2ab\)

\(=a^2+2a+b^2-2b-2ab\)

\(=\left(a^2-2ab+b^2\right)+\left(2a-2b\right)\)

\(=\left(a-b\right)^2+2\left(a-b\right)\)

\(=7^2-2.7=35\)

Câu 2)

a)  \(a^3m+2a^2m+am\)

\(=am\left(a^2+2a+1\right)\)

\(=am\left(a+1\right)^2\)

b)   \(x^8+x^4+1\)

\(=x^8+2x^4+1-x^4\)

\(=\left(x^4+1\right)^2-x^4\)

\(=\left(x^4+1-x^2\right)\left(x^4+x^2+1\right)\)

\(=\left(x^4-x^2+1\right)\left(x^2+x+1\right)\left(x^2-x+1\right)\)

2 tháng 4 2018

Nha ~ mình không biết đúng sai nhưng mà cảm ơn bạn nhiều lắm nha ~ <3

Bài 1: Cho △ ABC vuông ở A (AB<AC). Kẻ đường cao AH. Gọi E, N, M theo thứ tự là trung điểm của AB, AC và BCa) Chứng minh : Tứ giác EHMN là hình thang cânb) Chứng minh: HE ⊥ HNc) Từ A kẻ đường thẳng song song với BC cắt tia ME, MN theo thứ tự ở K và F. Chứng minh: Tứ giác AMBK là hình thoid) Chứng minh: AM, EN,BF và KC đồng quyBài 2: Cho hình bình hành ABCD tâm O. Trên đoạn OD lấy điểm E.Kẻ CF // AE (F ϵ...
Đọc tiếp

Bài 1: Cho △ ABC vuông ở A (AB<AC). Kẻ đường cao AH. Gọi E, N, M theo thứ tự là trung điểm của AB, AC và BC

a) Chứng minh : Tứ giác EHMN là hình thang cân

b) Chứng minh: HE ⊥ HN

c) Từ A kẻ đường thẳng song song với BC cắt tia ME, MN theo thứ tự ở K và F. Chứng minh: Tứ giác AMBK là hình thoi

d) Chứng minh: AM, EN,BF và KC đồng quy

Bài 2: Cho hình bình hành ABCD tâm O. Trên đoạn OD lấy điểm E.Kẻ CF // AE (F ϵ BD)

a) Chứng minh: Tứ giác AFCE là hình bình hành

b) Cho AF cắt BC tại M, CE cắt AD tại N. Chứng minh: M,O,N thẳng hàng

c) Lấy K đối xứng C qua E. Xác định vị trí của E trên OD để tứ giác AKDO là hình bình hành

d) Lấy I đối xứng với A qua D, lấy H đối xứng A qua B. Hình Bình hành ABCD phải có thêm điều kiện gì để I và H đối xứng với nhau qua đường thẳng AC?

MÌNH CẦN GẤP!! CÁC BẠN GIÚP MÌNH NHA!!! 

0