Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề 1: TỰ LUẬN
Câu 1: sin 60o31' = cos 29o29'
cos 75o12' = sin 14o48'
cot 80o = tan 10o
tan 57o30' = cot 32o30'
sin 69o21' = cos 20o39'
cot 72o25' = 17o35'
- Chiều về mình làm cho nha nha Giờ mình đi học rồi Bạn có gấp lắm hông
\(pt\Leftrightarrow x^6+\left(x^3-y\right)^2=320\)
Do \(x,y\) nguyên nên ta có:
\(0\le x^6\le320\)
\(\Leftrightarrow0\le x^2\le7\Rightarrow x^2=0;1;4\)
Thử các giá trị của x vào ta tìm được
\(\left(x;y\right)=\left(2;24\right);\left(2;-8\right);\left(-2;8\right);\left(-2;-24\right)\)
Vậy có 4 cặp số nguyê \(x;y\) thỏa mãn
Bài 1 :
\(a,2\sqrt{50}-3\sqrt{72}+\sqrt{98}=2\sqrt{2.25}-3\sqrt{2.36}+\sqrt{2.49}=10\sqrt{2}-18\sqrt{2}+7\sqrt{2}\) = \(-\sqrt{2}\)
\(b,\sqrt{\left(3-\sqrt{5}\right)^2}-\sqrt{\left(\sqrt{5}-\sqrt{7}\right)^2}+\sqrt{28}\) = \(\left|3-\sqrt{5}\right|-\left|\sqrt{5}-\sqrt{7}\right|+\sqrt{7.4}=3-\sqrt{5}-\sqrt{5}+\sqrt{7}+2\sqrt{7}=3-2\sqrt{5}+3\sqrt{7}\)
\(c,\sqrt{7-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}=\sqrt{3-2.2\sqrt{3}+4}+\sqrt{3+2.2\sqrt{3}+4}=\)\(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{\left(\sqrt{3}+2\right)^2}=\left|-\left(2-\sqrt{3}\right)\right|+\left|\sqrt{3}+2\right|=2-\sqrt{3}+\sqrt{3}+2=4\)
Bài 1:
a: ĐKXĐ: x>0; x<>1
b: \(A=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+1}\right)\cdot\left(1+\dfrac{1}{\sqrt{x}}\right)\)
\(=\dfrac{\sqrt{x}+1+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}=\dfrac{2}{\sqrt{x}-1}\)
c: Thay \(x=6+2\sqrt{5}\) vào A, ta được:
\(A=\dfrac{2}{\sqrt{5}+1-1}=\dfrac{2\sqrt{5}}{5}\)
d: Để |A|>A thì A>0
=>\(\sqrt{x}-1>0\)
hay x>1
a, Với x > 0 ; \(x\ne1\)
\(M=\left(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}}{x-1}\right):\left(\frac{2}{x}-\frac{2-x}{x\sqrt{x}+x}\right)\)
\(=\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)+\sqrt{x}}{x-1}\right):\left(\frac{2}{x}+\frac{x-2}{x\left(\sqrt{x}+1\right)}\right)\)
\(=\frac{x+2\sqrt{x}}{x-1}:\frac{2\left(\sqrt{x}+1\right)+x-2}{x\sqrt{x}+x}=\frac{x+2\sqrt{x}}{x-1}:\frac{2\sqrt{x}+x}{x\sqrt{x}+x}\)
\(=\frac{x\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{x}{\sqrt{x}-1}\)
b, Ta có : M = -1/2 => \(\frac{x}{\sqrt{x}-1}=-\frac{1}{2}\Rightarrow2x=-\sqrt{x}+1\)
\(\Leftrightarrow2x+\sqrt{x}-1=0\)Đặt \(\sqrt{x}=t\left(t\ge0\right)\)
\(\Leftrightarrow2t^2+t-1=0\Leftrightarrow\left(2t-1\right)\left(t+1\right)=0\Leftrightarrow t=\frac{1}{2}\left(tm\right);t=-1\left(ktm\right)\)
Theo cách đặt : \(\sqrt{x}=\frac{1}{2}\Rightarrow x=\frac{1}{4}\)( tmđk )
c, Ta có : \(M>1\Rightarrow\frac{\sqrt{x}}{\sqrt{x}-1}-1>0\Leftrightarrow\frac{1}{\sqrt{x}-1}>0\)
\(\Rightarrow\sqrt{x}-1>0\Leftrightarrow x>1\)