![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\left\{2x-3\left(x-1\right)-5\left[x-4\left(3-2x\right)+10\right]\right\}.\left(-2x\right)\)
\(=\left\{2x-3x+3-5\left[x-12+8x+10\right]\right\}.\left(-2x\right)\)
\(=\left\{-x+3-5\left(7x-2\right)\right\}.\left(-2x\right)\)
\(=\left(-x+3-35x+10\right).\left(-2x\right)\)
\(=\left(-36x+13\right).\left(-2x\right)\)
\(=72x^2-26x\)
![](https://rs.olm.vn/images/avt/0.png?1311)
= 6x2 + 21x -2x - 7 - 6x2 + 5x + 6x - 5 - 10x - 12
= 20x - 19
![](https://rs.olm.vn/images/avt/0.png?1311)
2x2+x-3
=2x2+3x-2x-3
=2x(2x+3)-(2x+3)
=(2x+3)(2x-1)
Chúc bạn học tốt
2x2+x-3
=2𝑥2+3𝑥−2𝑥−3
=𝑥(2𝑥+3)−1(2𝑥+3)
=(𝑥−1)(2𝑥+3)
ez mà bro :D
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt : P = \(\left(x-1\right)\left(2x-1\right)\left(2x^2-3x-1\right)+2017\)
\(=\left(2x^2-3x+1\right)\left(2x^2-3x-1\right)+2017\)
\(=\left(2x^2-3x\right)^2+2016\ge2016\)
Dấu "=" xảy ra <=> \(2x^2-3x=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}\)
Vậy GTNN của P là 2016 đạt tại x = 0 hoặc x = 3/2
![](https://rs.olm.vn/images/avt/0.png?1311)
\(X^2-2XY+Y^2+2X-2Y\)
\(\Leftrightarrow\left(X^2-2XY+Y^2\right)+\left(2X-2Y\right)\)
\(\Leftrightarrow\left(X-Y\right)^2+2\left(X-Y\right)\)
\(\Leftrightarrow\left(X-Y\right)\left(X-Y+2\right)\)
Tk mình nhé.
![](https://rs.olm.vn/images/avt/0.png?1311)
(2x + 1)(x - 2) - (2x - 1)2
= (2x + 1)(x - 2) - (4x2 - 4x + 1)
= 2x2 - 3x - 2x - 4x2 + 4x - 1
= -2x2 + x - 3
\(TH1:x\ge0\)
\(x=2x+1\)
\(-x=1\)
\(x=-1\left(KTM\right)\)
\(TH2:x\le0\)
\(-x=2x+1\)
\(-3x=1\)
\(x=-\frac{1}{3}\left(TM\right)\)