Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Vì x=25 thỏa mãn ĐKXĐ nên Thay x=25 vào biểu thức \(A=\dfrac{\sqrt{x}-2}{x+1}\), ta được:
\(A=\dfrac{\sqrt{25}-2}{25+1}=\dfrac{5-2}{25+1}=\dfrac{3}{26}\)
Vậy: Khi x=25 thì \(A=\dfrac{3}{26}\)
2) Ta có: \(B=\dfrac{\sqrt{x}-3}{\sqrt{x}+1}+\dfrac{2x+8\sqrt{x}-6}{x-\sqrt{x}-2}\)
\(=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}+\dfrac{2x+8\sqrt{x}-6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x-5\sqrt{x}+6+2x+8\sqrt{x}-6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{3x+3\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{3\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{3\sqrt{x}}{\sqrt{x}-2}\)
a: Ta có: \(\left(12-6\sqrt{3}\right)\cdot\sqrt{\dfrac{3}{14-8\sqrt{3}}}-3\cdot\sqrt{2\left(1-\sqrt{1-\sqrt{4-2\sqrt{3}}}\right)+2\sqrt{4+2\sqrt{3}}}\)
\(=\left(3-\sqrt{3}\right)\cdot\dfrac{\sqrt{3}}{2\sqrt{2}-\sqrt{6}}-3\cdot\sqrt{2\cdot\left(1-\sqrt{1-\sqrt{3}+1}\right)+2\cdot\left(\sqrt{3}+1\right)}\)
\(=\left(3-\sqrt{3}\right)\cdot\dfrac{\sqrt{6}\left(2+\sqrt{3}\right)}{2}-3\cdot\sqrt{\left(2-\sqrt{2}\cdot\sqrt{4-2\sqrt{3}}\right)+2\sqrt{3}+2}\)
\(=\dfrac{\left(3\sqrt{6}-3\sqrt{2}\right)\left(2+\sqrt{3}\right)}{2}-3\cdot\sqrt{2-\sqrt{2}\left(\sqrt{3}+1\right)+2\sqrt{3}+2}\)
\(=\dfrac{3\sqrt{6}+3\sqrt{2}}{2}-3\cdot\sqrt{2-\sqrt{6}-\sqrt{2}+2\sqrt{3}+2}\)
Đến đây thì xin lỗi bạn, mình thua
b: Ta có: \(x^4+6x^3+11x^2+6x+1\)
\(=x^4+3x^3+x^2+3x^3+9x^2+3x+x^2+3x+1\)
\(=\left(x^2+3x+1\right)^2\) là số chính phương(đpcm)
a: góc ASB=1/2*180=90 độ=góc ABM
b: ON vuông góc AS
BS vuông góc SA
=>ON//BS
c: góc OIM+góc OBM=180 độ
=>OIMB nội tiếp
Bài 3:
1: Ta có: \(P=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}-\dfrac{5\sqrt{x}+2}{x-4}\)
\(=\dfrac{x+3\sqrt{x}+2+2x-4\sqrt{x}-5\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}+2}\)
`a)sqrtx=sqrt{16+6sqrt7}`
`=sqrt{9+2.3sqrt7+7}`
`=sqrt{(3+sqrt7)^2}`
`=3+sqrt7`
`b)sqrtx=sqrt{4-2sqrt3}=sqrt{3-2sqrt3+1}=sqrt{(sqrt3-1)^2}=sqrt3-1`
`c)sqrtx=sqrt{13+4sqrt3}=sqrt{12+2.2sqrt3+1}=sqrt{(2sqrt3+1)^2}=2sqrt3+1`
a) \(x=16+6\sqrt{7}\)
\(\Rightarrow\sqrt{x}=\sqrt{16+6\sqrt{7}}\)
\(\Rightarrow\sqrt{x}=\sqrt{7+6\sqrt{7}+9}\)
\(\Rightarrow\sqrt{x}=\sqrt{7+6\sqrt{7}+3^2}\)
\(\Rightarrow\sqrt{x}=\sqrt{\left(\sqrt{7}+3\right)^2}\)
\(\Rightarrow\left(\sqrt{x}\right)^2=\sqrt{\left(\sqrt{7}+3\right)^2}\)
\(\Rightarrow\sqrt{7}+3\)
KL: x=\(\sqrt{7}+3\)