K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
15 tháng 10 2020

Lời giải:
Vì $O$ là tâm hình bình hành nên $O$ là trung điểm của $AC, BD$

$\Rightarrow \overrightarrow{OA}, \overrightarrow{OC}; \overrightarrow{OB}, \overrightarrow{OD}$ là 2 cặp vecto đối nhau

$\Rightarrow \overrightarrow{OA}+\overrightarrow{OC}=\overrightarrow{OB}+\overrightarrow{OD}=\overrightarrow{0}$

$\Rightarrow \overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}=\overrightarrow{0}$ (đpcm)

b) Theo phần a ta có:

\(\overrightarrow{MA}+\overrightarrow{MC}=\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{MO}+\overrightarrow{OC}\)

\(=\overrightarrow{MO}+\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{OC}=\overrightarrow{MO}+\overrightarrow{MO}+\overrightarrow{OB}+\overrightarrow{OD}\)

\(=(\overrightarrow{MO}+\overrightarrow{OB})+(\overrightarrow{MO}+\overrightarrow{OD})=\overrightarrow{MB}+\overrightarrow{MD}\) (đpcm)

AH
Akai Haruma
Giáo viên
16 tháng 10 2020

Hình vẽ:
Bài 2. TỔNG VÀ HIỆU CỦA HAI VECTO

31 tháng 7 2019

Chương I: VÉC TƠ

31 tháng 7 2019

Chương I: VÉC TƠ

30 tháng 7 2019

câu a phải là CM \(\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AD}+\overrightarrow{CB}\) chứ nhỉ?

a/ \(\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AD}+\overrightarrow{DB}+\overrightarrow{CB}+\overrightarrow{BD}\)

\(=\overrightarrow{AD}+\overrightarrow{CB}\)

b/ \(\overrightarrow{AB}=\overrightarrow{CD}\Leftrightarrow\overrightarrow{AC}+\overrightarrow{CB}=\overrightarrow{CB}+\overrightarrow{BD}\)

\(\Leftrightarrow\overrightarrow{AC}=\overrightarrow{BD}\)

Câu c nghe nó sai sai kiểu j ấy, \(\overrightarrow{AB},\overrightarrow{AC}\) tạo thành \(\widehat{BAC}\) rồi thì làm sao thành phân giác đc :))

30 tháng 7 2019

đúng rồi câu c bị lag :v

5 tháng 8 2019

cảm ơn nha ^-^