Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số sản phẩm dự định là a (sản phẩm ) (a là số tự nhiên khác 0)
Vì theo dự định mỗi ngày sản xuất 50 sản phẩm nên số ngày theo dự định là \(\dfrac{a}{50}\)
Nhưng thực tế , đội đã sản xuất theeo được 30 sản phẩm do mỗi ngày vượt mức 10 sản phẩm (nghĩa là sản xuất 60 sản phẩm) , nên số ngày thực tế là \(\dfrac{a+30}{60}\)
Vì thực tế sớm hơn dự định 2 ngày nên ta có phương trình :
\(\dfrac{a}{50}=\dfrac{a+30}{60}+2\\ \Leftrightarrow6a=5\left(a+30+120\right)\\\Leftrightarrow a=750\left(t.m\right) \)
Vậy số sản phẩm dự định là 750 sản phẩm
Bài 3:
Gọi số sản phẩm đội phải sản xuất theo kế hoạch là x( sản phẩm, x\(\in N\)*)
Thời gian đội sản xuất theo kế hoạch là: \(\dfrac{x}{50}\) (ngày)
Số ngày làm thực tế là: \(\dfrac{x+30}{50+10}=\dfrac{x+30}{60}\) (ngày)
Theo bài ra, ta có phương trình:
\(\dfrac{x}{50}-\dfrac{x+30}{60}=2\)
\(\Leftrightarrow\dfrac{60x-50\left(x+30\right)}{50.60}=2\)
\(\Leftrightarrow60x-50x-1500=6000\Leftrightarrow x=750\)(thoả mãn)
Vậy theo kế hoạch đội phải sản xuất 750 sản phẩm
Bài 1:
a) Xét tứ giác BHCN có
BH//CN(gt)
BN//CH(gt)
Do đó: BHCN là hình bình hành(Dấu hiệu nhận biết hình bình hành)
b) Ta có: BHCN là hình bình hành(cmt)
nên Hai đường chéo BC và HN cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)
mà M là trung điểm của BC(gt)
nên M là trung điểm của HN
hay H,M,N thẳng hàng(đpcm)
\(3x^2-2x+5=0\)
\(\Leftrightarrow2x^2+x^2-2x+1+4=0\)
\(\Leftrightarrow2x^2+\left(x-1\right)^2=-4\)
Phương trình vô nghiệm.
Sai đề phải là 3x2-2x-5=0
Ta có:3x2-2x-5=0
<=> 3x2+3x-5x-5=0
<=> 3x(x+1)-5(x+1)=0
<=> (x+1)(3x-5)=0
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{5}{3}\end{matrix}\right.\)
a: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
=>ADHE là hình chữ nhật
b: ΔHDB vuông tại D
mà DI là đường trung tuyến
nên IH=ID=IB
=>IH=ID
=>ΔIHD cân tại I
=>\(\widehat{IDH}=\widehat{IHD}\)
mà \(\widehat{IHD}=\widehat{BCA}\)(hai góc đồng vị, HD//AC)
nên \(\widehat{IDH}=\widehat{BCA}\)
Ta có: ADHE là hình chữ nhật
=>\(\widehat{EDH}=\widehat{EAH}=\widehat{HAC}\)
mà \(\widehat{HAC}=\widehat{ABC}\left(=90^0-\widehat{HAB}\right)\)
nên \(\widehat{EDH}=\widehat{ABC}\)
\(\widehat{EDI}=\widehat{EDH}+\widehat{IDH}\)
\(=\widehat{ABC}+\widehat{ACB}\)
\(=90^0\)
=>ED\(\perp\)DI
c: Ta có: ΔCEH vuông tại E
mà EK là đường trung tuyến
nên KE=KH
=>ΔKEH cân tại K
=>\(\widehat{KEH}=\widehat{KHE}\)
mà \(\widehat{KHE}=\widehat{ABC}\)(hai góc đồng vị, EH//AB)
nên \(\widehat{KEH}=\widehat{ABC}\)
Ta có: ADHE là hình chữ nhật
=>\(\widehat{DEH}=\widehat{DAH}\)
mà \(\widehat{DAH}=\widehat{ACB}\left(=90^0-\widehat{ABC}\right)\)
nên \(\widehat{DEH}=\widehat{ACB}\)
\(\widehat{KED}=\widehat{KEH}+\widehat{DEH}\)
\(=\widehat{ABC}+\widehat{ACB}=90^0\)
=>KE\(\perp\)ED
mà DI\(\perp\)DE
nên DI//KE
Xét tứ giác EKID có DI//EK
nên EKID là hình thang
Hình thang EKID có \(\widehat{KED}=90^0\)
nên EKID là hình thang vuông
d: DI=HB/2
=>HB=2*DI=2(cm)
EK=1/2CH
=>\(CH=2\cdot EK=2\cdot4=8\left(cm\right)\)
BC=BH+CH
=2+8
=10(cm)
Xét ΔABC có AH là đường cao
nên \(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC=\dfrac{1}{2}\cdot10\cdot6=30\left(cm^2\right)\)
Câu 3:
Gọi độ dài quãng đường AB là x(km)
Thời gian xe máy đi từ A đến B là: \(\dfrac{x}{30}\left(h\right)\)
Thời gian xe máy đi từ B về A là: \(\dfrac{x}{35}\left(h\right)\)
Theo đề, ta có phương trình: \(\dfrac{x}{30}+\dfrac{x}{35}=\dfrac{13}{3}\)
\(\Leftrightarrow\dfrac{7x}{210}+\dfrac{6x}{210}=\dfrac{910}{210}\)
\(\Leftrightarrow13x=910\)
hay x=70(thỏa ĐK)
Vậy: Độ dài quãng đường AB là 70km
a: Xét ΔBAC vuông tại A và ΔBHA vuông tại H có
góc B chung
=>ΔBAC đồng dạng với ΔBHA
=>BA/BH=BC/BA
=>BA^2=BH*BC
b: BA^2=BH*BC
=>BM^2=BH*BC
=>BM/BH=BC/BM
=>ΔBMC đồng dạng với ΔBHM
=>góc BMH=góc BCM
a: Ta có: \(x^2-x+1\)
\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
d: Ta có: \(x^2-2x+\left|y+1\right|+5\)
\(=\left(x-1\right)^2+\left|y+1\right|+4\ge4\forall x,y\)
Dấu '=' xảy ra khi x=1 và y=-1
ko rảnh