Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c/
\(\Leftrightarrow\sqrt{2}sin\left(x+\frac{\pi}{4}-\frac{\pi}{4}\right)=1\)
\(\Leftrightarrow sinx=\frac{\sqrt{2}}{2}\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k2\pi\\x=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)
d/
\(\Leftrightarrow sin2x-2cos2x-5=2sin2x-cos2x-6\)
\(\Leftrightarrow sin2x+cos2x=1\)
\(\Leftrightarrow\sqrt{2}sin\left(2x+\frac{\pi}{4}\right)=1\)
\(\Leftrightarrow sin\left(2x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\)
\(\Rightarrow\left[{}\begin{matrix}2x+\frac{\pi}{4}=\frac{\pi}{4}+k2\pi\\2x+\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{\pi}{4}+k\pi\end{matrix}\right.\)
a/ ĐKXĐ:...
\(\Leftrightarrow\frac{sinx}{cosx}-\frac{\sqrt{2}}{cosx}=1\)
\(\Leftrightarrow sinx-\sqrt{2}=cosx\)
\(\Leftrightarrow sinx-cosx=\sqrt{2}\)
\(\Leftrightarrow\sqrt{2}sin\left(x-\frac{\pi}{4}\right)=\sqrt{2}\)
\(\Leftrightarrow sin\left(x-\frac{\pi}{4}\right)=1\)
\(\Leftrightarrow x-\frac{\pi}{4}=\frac{\pi}{2}+k2\pi\)
\(\Leftrightarrow x=\frac{3\pi}{4}+k2\pi\)
b/
ĐKXĐ: ...
\(\Leftrightarrow\left(2sinx-1\right)\left(sin4x-1\right)+cos4x\left(2sinx-1\right)=0\)
\(\Leftrightarrow2sinx.sin4x-2sinx-sin4x+1+2sinx.cos4x-cos4x=0\)
\(\Leftrightarrow2sinx\left(sin4x+cos4x\right)-\left(sin4x+cos4x\right)-\left(2sinx-1\right)=0\)
\(\Leftrightarrow\left(2sinx-1\right)\left(sin4x+cos4x\right)-\left(2sinx-1\right)=0\)
\(\Leftrightarrow\left(2sinx-1\right)\left(sin4x+cos4x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\\sin4x+cos4x=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\\sin\left(4x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\\4x+\frac{\pi}{4}=\frac{\pi}{4}+k2\pi\\4x+\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\\x=\frac{k\pi}{2}\\x=\frac{\pi}{8}+\frac{k\pi}{2}\left(l\right)\end{matrix}\right.\)
Giải pt:
\(\left(2sinx-1\right)^2-\left(2sinx-1\right)\left(sinx-\frac{3}{2}\right)=0\)
Giúp với ạ !
\(\Leftrightarrow\left(2sinx-1\right)\left(2sinx-1-sinx+\frac{3}{2}\right)=0\)
\(\Leftrightarrow\left(2sinx-1\right)\left(sinx+\frac{1}{2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\\sinx=-\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\\x=-\frac{\pi}{6}+k2\pi\\x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)
Lời giải:
PT $\Leftrightarrow 2\sin 2x\cos 2x+2\cos 2x+4(\sin x+\cos x)=1+\cos ^22x-\sin ^22x=2\cos ^22x$
$\Leftrightarrow \sin 2x\cos 2x+\cos 2x+2(\sin x+\cos x)=\cos ^22x$
$\Leftrightarrow \cos 2x(\sin 2x+1-\cos 2x)+2(\sin x+\cos x)=0$
$\Leftrightarrow \cos 2x(2\sin x\cos x+2\sin ^2x)+2(\sin x+\cos x)=0$
$\Leftrightarrow \cos 2x\sin x(\cos x+\sin x)+(\sin x+\cos x)=0$
$\Leftrightarrow (\sin x+\cos x)(\cos 2x\sin x+1)=0$
Nếu $\sin x+\cos x=0$. Kết hợp $\sin ^2x+\cos ^2x=1$ suy ra $(\sin x, \cos x)=(\frac{1}{\sqrt{2}}; \frac{-1}{\sqrt{2}})$ và hoán vị
$\Rightarrow x=k\pi -\frac{\pi}{4}$ với $k$ nguyên.
Nếu $\cos 2x\sin x+1=0$
$\Leftrightarrow (1-2\sin ^2x)\sin x+1=0$
$\Leftrightarrow (1-\sin x)(2\sin ^2x+2\sin x+1)=0$
$\Rightarrow \sin x=1$
$\Rightarrow x=2k\pi +\frac{\pi}{2}$ với $k$ nguyên.
\(\Leftrightarrow2sinx+cos3x+sin2x-sin4x-1=0\)
\(\Leftrightarrow2sinx-1+cos3x-2cos3x.sinx=0\)
\(\Leftrightarrow2sinx-1-cos3x\left(2sinx-1\right)=0\)
\(\Leftrightarrow\left(2sinx-1\right)\left(1-cos3x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\\cos3x=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\\x=\frac{k2\pi}{3}\end{matrix}\right.\)
a/ \(sin^2x+sinx-3=m\)
Đặt \(sinx=t\Rightarrow-1\le t\le1\Rightarrow t^2+t-3=m\)
Xét \(f\left(t\right)=t^2+t-3\) trên \(\left[-1;1\right]\)
\(f\left(-1\right)=-3;\) \(f\left(1\right)=-1\) ; \(f\left(-\frac{1}{2}\right)=-\frac{13}{4}\)
\(\Rightarrow-\frac{13}{4}\le f\left(t\right)\le-1\)
\(\Rightarrow\) Để pt có nghiệm thì \(-\frac{13}{4}\le m\le-1\)
b/ Tương tự ta được \(-2\le m\le2\)
c/ \(\Leftrightarrow2cos^2x-1-cosx+m=0\)
\(\Leftrightarrow2t^2-t-1=-m\) với \(t=cosx\)
Giống câu a, ta được \(-\frac{9}{8}\le-m\le2\Rightarrow-2\le m\le\frac{9}{8}\)
d/\(\Leftrightarrow sinx=\frac{-2m+3}{2}\)
\(-1\le sinx\le1\Rightarrow-1\le\frac{-2m+3}{2}\le1\)
\(\Rightarrow\frac{1}{2}\le m\le\frac{5}{2}\)
\(\Leftrightarrow-4sin4x.cos4x=\sqrt{2}\)
\(\Leftrightarrow-2sin8x=\sqrt{2}\)
\(\Leftrightarrow sin8x=-\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}8x=-\frac{\pi}{4}+k2\pi\\8x=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{32}+\frac{k\pi}{4}\\x=\frac{5\pi}{32}+\frac{k\pi}{4}\end{matrix}\right.\)