Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
TXĐ:D=R
\(f\left(-x\right)=2\cdot\left(-x\right)^4-3\cdot\left(-x\right)^2+1\)
\(=2x^4-3x^2+1=f\left(x\right)\)
=>f(x) là hàm số chẵn
5: ĐKXĐ: \(\left\{{}\begin{matrix}x^2+3x-4>=0\\2x^2-2x>=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(x+4\right)\left(x-1\right)>=0\\2x\left(x-1\right)>=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>=1\\x< =-4\end{matrix}\right.\\\left[{}\begin{matrix}x>=1\\x< =0\end{matrix}\right.\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x>=1\\x< =-4\end{matrix}\right.\)
\(\sqrt{x^2+3x-4}< \sqrt{2x^2-2x}\)
=>\(x^2+3x-4< 2x^2-2x\)
=>\(2x^2-2x-x^2-3x+4>0\)
=>\(x^2-5x+4>0\)
=>(x-1)(x-4)>0
=>\(\left[{}\begin{matrix}x>4\\x< 1\end{matrix}\right.\)
Kết hợp ĐKXĐ, ta được:
\(\left[{}\begin{matrix}x>4\\x< =-4\end{matrix}\right.\)
7: ĐKXĐ: x>=-1
\(2\sqrt{x+2+2\sqrt{x+1}}-\sqrt{x+1}=4\)
=>\(2\cdot\sqrt{x+1+2\sqrt{x+1}+1}-\sqrt{x+1}=4\)
=>\(2\cdot\sqrt{\left(\sqrt{x+1}+1\right)^2}-\sqrt{x+1}=4\)
=>\(2\left(\sqrt{x+1}+1\right)-\sqrt{x+1}=4\)
=>\(\sqrt{x+1}+2=4\)
=>\(\sqrt{x+1}=2\)
=>x+1=4
=>x=3(nhận)
1.1
Pt có 2 nghiệm trái dấu và tổng 2 nghiệm bằng -3 khi:
\(\left\{{}\begin{matrix}ac< 0\\x_1+x_2=-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\left(m+2\right)< 0\\\dfrac{2m+1}{m+2}=-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< -2\\m=-\dfrac{7}{5}\end{matrix}\right.\)
\(\Rightarrow\) Không tồn tại m thỏa mãn
b.
Pt có nghiệm kép khi:
\(\left\{{}\begin{matrix}m+2\ne0\\\Delta=\left(2m+1\right)^2-8\left(m+2\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne-2\\4m^2-4m-15=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}m=\dfrac{5}{2}\\m=-\dfrac{3}{2}\end{matrix}\right.\)
a. Gọi \(E\left(x;y\right)\Rightarrow\overrightarrow{EA}=\left(1-x;3-y\right)\) ; \(\overrightarrow{EB}=\left(5-x;4-y\right)\) ; \(\overrightarrow{ED}=\left(-3-x;-4-y\right)\)
\(\Rightarrow\overrightarrow{EA}+\overrightarrow{ED}-3\overrightarrow{EB}=\left(x-17;y-13\right)\)
\(\Rightarrow\left\{{}\begin{matrix}x-17=0\\y-13=0\end{matrix}\right.\) \(\Rightarrow E\left(17;13\right)\)
b. Hạ AH vuông góc CD
\(S_{ADI}=\dfrac{1}{2}AH.DI\) ; \(S_{ABCD}=\dfrac{1}{2}AH.\left(AB+CD\right)\)
\(\Rightarrow\dfrac{1}{2}AH.DI=\dfrac{3}{5}.\dfrac{1}{2}AH\left(AB+CD\right)\)
\(\Rightarrow DI=\dfrac{3}{5}\left(AB+CD\right)=\dfrac{3}{5}\left(AB+DI+AB\right)\)
\(\Leftrightarrow\dfrac{2}{5}DI=\dfrac{6}{5}AB\Rightarrow DI=3AB\)
\(\Rightarrow\overrightarrow{DI}=3\overrightarrow{AB}\Rightarrow I\left(9;-1\right)\)
Phương trình AI: \(x+2y-7=0\)
Phương trình BD: \(x-y-1=0\)
Tọa độ M là nghiệm: \(\left\{{}\begin{matrix}x+2y-7=0\\x-y-1=0\end{matrix}\right.\) \(\Rightarrow M\left(3;2\right)\)