Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\hept{\begin{cases}\left(x-y\right)^2=1\\2x^2+2y^2-2xy-y=0\end{cases}}\)
Xét từng TH với x-y=1 và x-y=-1
\(b,\hept{\begin{cases}\left(x-1\right)\left(y+2\right)=0\\xy-3x+2y=0\end{cases}}\)
Xét từng TH x=1 và y=-2
Ta có \(x=0\leftrightarrow y=0\). Xét trường hợp mà \(t=xy\ne0\). Nhân phương trình đầu với \(x\), phương trình thứ hai nhân với \(y\) ta sẽ được \(t^2-2t=-3x^3,t^2+2t=-y^3\to\left(t^2-2t\right)\left(t^2+2t\right)=3t^3\to t^2-4=3t\to t=-1,4.\)
Với \(t=-1\to-3x^3=3\to x=-1,y=1.\)
Với \(t=4\to-3x^3=8,y^3=-24\to x=-\frac{2}{\sqrt[3]{3}},y=-2\sqrt[3]{3}.\)
Vậy hệ có ba nghiệm nêu trên