Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phần a)
\(\left\{\begin{matrix} x\sqrt{y}+y\sqrt{x}=30\\ x\sqrt{x}+y\sqrt{y}=35\end{matrix}\right.\) \(\Rightarrow \left\{\begin{matrix} \sqrt{xy}(\sqrt{x}+\sqrt{y})=30\\ (\sqrt{x}+\sqrt{y})(x-\sqrt{xy}+y)=35\end{matrix}\right.\)
Khi đó hpt trở thành:
Đặt \((\sqrt{xy}; \sqrt{x}+\sqrt{y})=(a,b)\)
HPT trở thành:
\(\left\{\begin{matrix} ab=30\\ b(b^2-3a)=35\end{matrix}\right.\) \(\Rightarrow \left\{\begin{matrix} ab=30\\ b^3=125\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a=6\\ b=5\end{matrix}\right.\)
Vậy \(\sqrt{xy}=6; \sqrt{x}+\sqrt{y}=5\). Theo định lý Viete đảo thì \(\sqrt{x}; \sqrt{y}\) là nghiệm của pt:
\(T^2-5T+6=0\Rightarrow (\sqrt{x}; \sqrt{y})=(2,3)\) và hoán vị
\(\Rightarrow (x,y)=(4,9)\) và hoán vị
b)
HPT \(\Leftrightarrow \left\{\begin{matrix} x+y+xy=2+3\sqrt{2}\\ (x+y)^2-2xy=6\end{matrix}\right.\)
Đặt \((x+y,xy)=(a,b).\) Khi đó hpt trở thành:
\(\left\{\begin{matrix} a+b=2+3\sqrt{2}\\ a^2-2b=6\end{matrix}\right.\Rightarrow a^2-2(2+3\sqrt{2}-a)=6\)
\(\Leftrightarrow a^2+2a=10+6\sqrt{2}\)
\(\Rightarrow (a+1)^2=11+6\sqrt{2}=(3+\sqrt{2})^2\)
\(\Rightarrow \left[\begin{matrix} a=2+\sqrt{2}\\ a=-4-\sqrt{2}\end{matrix}\right.\)\(\Rightarrow \left[\begin{matrix} b=2\sqrt{2}\\ b=6+4\sqrt{2}\end{matrix}\right.\)
Với \((a,b)=(2+\sqrt{2}; 2\sqrt{2})\) theo đl Viete đảo suy ra \((x,y)=(2,\sqrt{2})\) và hoán vị.
Với \((a,b)=(-4-\sqrt{2}, 6+4\sqrt{2})\Rightarrow \) theo đl Viete đảo thì (x,y) là nghiệm của pt: \(T^2+(4+\sqrt{2})T+6+4\sqrt{2}=0\), pt vô nghiệm nên không tồn tại $x,y$
Vậy \((x,y)=(2,\sqrt{2})\) và hoán vị.
\(e,\left\{{}\begin{matrix}\left(\frac{x}{y}\right)^3+\left(\frac{x}{y}\right)^2=12\\\left(xy\right)^2+xy=6\end{matrix}\right.\left(x;y\ne0\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x}{y}=2\\xy\in\left\{2;-3\right\}\end{matrix}\right.\)
Vì \(\frac{x}{y}=2>0\Rightarrow xy>0\Rightarrow xy=2\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{y}=2\\xy=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2y\\2y^2=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\left(h\right)\left\{{}\begin{matrix}x=-2\\y=-1\end{matrix}\right.\)
\(a,\left\{{}\begin{matrix}x^2+\frac{1}{y^2}+\frac{x}{y}=3\\x+\frac{1}{y}+\frac{x}{y}=3\end{matrix}\right.\left(x;y\ne0\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+\frac{1}{y}\right)^2-\frac{x}{y}=3\\\left(x+\frac{1}{y}\right)+\frac{x}{y}=3\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x+\frac{1}{y}=a\\\frac{x}{y}=b\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a^2-b=3\\a+b=3\end{matrix}\right.\)
Làm nốt nha
- Lời giải Ta có hệ phương trình: \left\{\begin{matrix} x \sqrt{y}+y \sqrt{x}=30 \\ x \sqrt{x}+y \sqrt{y}=35 \end{matrix}\right.. Đặt \left\{\begin{matrix} a=\sqrt{x} \\ b=\sqrt{y} \end{matrix}\right. (a, b\geq 0) Ta có: \left\{\begin{matrix} a^2b+ab^2=30 && (1)\\ a^3+b^3=35 && (2)\end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} ab(a+b)=30\\ (a+b)(a^2-ab+b^2)=35\end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} 7ab(a+b)=210\\ 6(a+b)(a^2-ab+b^2)=210\end{matrix}\right. Suy ra: 6(a+b)(a^2+b^2-ab)-7ab(a+b)=0 \Leftrightarrow (a+b)(6a^2+6b^2-13ab)=0 \Leftrightarrow (a+b)(2a-3b)(3a-2b)=0 \Leftrightarrow a+b=0 hoặc 2a=3b hoặc 3a=2b \bullet Xét: a+b=0 Vì a, b\geq 0 nên a+b=0\Leftrightarrow a=b=0\Leftrightarrow \sqrt{x}=\sqrt{y}=0\Leftrightarrow x=y=0 \bullet Xét: 2a=3b, thay vào (2) ta có: a^3+\left(\frac{2a}{3}\right)^3=35\Leftrightarrow \frac{35}{27}a^3=35\Leftrightarrow a^3=27 \Leftrightarrow a=3\Rightarrow b=2. Suy ra \left\{\begin{matrix} \sqrt{x}=3 \\ \sqrt{y}=2 \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} x=9\\ y=4\end{matrix}\right. \bullet Xét 3a=2b, thay vào (2) có: a^3+\left(\frac{3a}{2}\right)^3=35\Leftrightarrow \frac{35}{8}a^3=35\Leftrightarrow a^3=8 \Leftrightarrow a=2\Rightarrow b=3. Suy ra \left\{\begin{matrix} \sqrt{x}=2 \\ \sqrt{y}=3 \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} x=4\\ y=9\end{matrix}\right. Vậy hệ phương trình đã cho có 3 nghiệm: (0; 0); (9; 4); (4; 9)
a: \(\Leftrightarrow\left\{{}\begin{matrix}\left(1-\sqrt{3}\right)x+2y=1-\sqrt{3}\\\left(1-\sqrt{3}\right)x+y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-\sqrt{3}\\x=1+\left(1+\sqrt{3}\right)\cdot\left(-\sqrt{3}\right)=-2-\sqrt{3}\end{matrix}\right.\)
b: \(\Leftrightarrow\left\{{}\begin{matrix}-x-\sqrt{2}y=\sqrt{3}\\x+\sqrt{2}y=-\sqrt{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y\in R\\x=-\sqrt{3}-y\sqrt{2}\end{matrix}\right.\)
Câu 1 \(\left\{{}\begin{matrix}2x+2y+2xy=10\left(1\right)\\x^2+y^2=5\left(2\right)\end{matrix}\right.\)
=>2.(2) - (1)=\(\left(x-1\right)^2+\left(y-1\right)^2+\left(x-y\right)^2=0\)
<=>\(\left\{{}\begin{matrix}x-1=0\\y-1=0\\x-y=0\end{matrix}\right.\) =>x=y=1
Câu 2 dùng vi-et đảo
Câu 3 rút x=y+1 từ pt trên rồi thế xuống dưới
Câu 4 lấy pt trên cộng pt dưới rồi xét dấu GTTĐ
Lời giải:
HPT \(\Leftrightarrow \left\{\begin{matrix}
\sqrt{xy}(\sqrt{x}+\sqrt{y})=30(1)\\
(\sqrt{x}+\sqrt{y})(x-\sqrt{xy}+y)=35\end{matrix}\right.\)
\(\Rightarrow 35\sqrt{xy}(\sqrt{x}+\sqrt{y})=30(\sqrt{x}+\sqrt{y})(x-\sqrt{xy}+y)\)
\(\Leftrightarrow (\sqrt{x}+\sqrt{y}))(30x-65\sqrt{xy}+30y)=0\)
Nếu $\sqrt{x}+\sqrt{y}=0$ thì từ $(1)$ suy ra $\sqrt{xy}.0=30$ (vô lý)
Nếu $30x-65\sqrt{xy}+30y=0$
$\Leftrightarrow 6x-13\sqrt{xy}+6y=0$
$\Leftrightarrow (2\sqrt{x}-3\sqrt{y})(3\sqrt{x}-2\sqrt{y})=0$
$\Rightarrow \sqrt{x}=\frac{3}{2}\sqrt{y}$ hoặc $\sqrt{x}=\frac{2}{3}\sqrt{y}$
Thay lần lượt từng TH vào $(1)\Rightarrow (x,y)=(9,4); (4,9)$
Lời giải:
HPT \(\Leftrightarrow \left\{\begin{matrix}
\sqrt{xy}(\sqrt{x}+\sqrt{y})=30(1)\\
(\sqrt{x}+\sqrt{y})(x-\sqrt{xy}+y)=35\end{matrix}\right.\)
\(\Rightarrow 35\sqrt{xy}(\sqrt{x}+\sqrt{y})=30(\sqrt{x}+\sqrt{y})(x-\sqrt{xy}+y)\)
\(\Leftrightarrow (\sqrt{x}+\sqrt{y}))(30x-65\sqrt{xy}+30y)=0\)
Nếu $\sqrt{x}+\sqrt{y}=0$ thì từ $(1)$ suy ra $\sqrt{xy}.0=30$ (vô lý)
Nếu $30x-65\sqrt{xy}+30y=0$
$\Leftrightarrow 6x-13\sqrt{xy}+6y=0$
$\Leftrightarrow (2\sqrt{x}-3\sqrt{y})(3\sqrt{x}-2\sqrt{y})=0$
$\Rightarrow \sqrt{x}=\frac{3}{2}\sqrt{y}$ hoặc $\sqrt{x}=\frac{2}{3}\sqrt{y}$
Thay lần lượt từng TH vào $(1)\Rightarrow (x,y)=(9,4); (4,9)$
Lời giải:
HPT \(\Leftrightarrow \left\{\begin{matrix}
\sqrt{xy}(\sqrt{x}+\sqrt{y})=30(1)\\
(\sqrt{x}+\sqrt{y})(x-\sqrt{xy}+y)=35\end{matrix}\right.\)
\(\Rightarrow 35\sqrt{xy}(\sqrt{x}+\sqrt{y})=30(\sqrt{x}+\sqrt{y})(x-\sqrt{xy}+y)\)
\(\Leftrightarrow (\sqrt{x}+\sqrt{y}))(30x-65\sqrt{xy}+30y)=0\)
Nếu $\sqrt{x}+\sqrt{y}=0$ thì từ $(1)$ suy ra $\sqrt{xy}.0=30$ (vô lý)
Nếu $30x-65\sqrt{xy}+30y=0$
$\Leftrightarrow 6x-13\sqrt{xy}+6y=0$
$\Leftrightarrow (2\sqrt{x}-3\sqrt{y})(3\sqrt{x}-2\sqrt{y})=0$
$\Rightarrow \sqrt{x}=\frac{3}{2}\sqrt{y}$ hoặc $\sqrt{x}=\frac{2}{3}\sqrt{y}$
Thay lần lượt từng TH vào $(1)\Rightarrow (x,y)=(9,4); (4,9)$
Bài 1:
ĐK:...........
PT\((1)\Rightarrow x+y+2\sqrt{(x+y)(x-y)}+x-y=16\) (bình phương 2 vế)
\(\Leftrightarrow x+\sqrt{x^2-y^2}=8\)
\(\Leftrightarrow \sqrt{x^2-y^2}=8-x\Rightarrow \left\{\begin{matrix} 8-x\geq 0\\ x^2-y^2=(8-x)^2=x^2-16x+64\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} x\leq 8\\ y^2=16x-64\end{matrix}\right.\)
Thay vào PT(2) ta có:
\(x^2+16x-64=128\)
\(\Leftrightarrow x^2+16x-192=0\Rightarrow \left[\begin{matrix} x=8\\ x=-24\end{matrix}\right.\)
Nếu \(x=8\Rightarrow y^2=16x-64=64\Rightarrow y=\pm 8\) (thỏa mãn)
Nếu $x=-24\Rightarrow y^2=16x-64< 0$ (vô lý-loại)
Vậy $(x,y)=(8,\pm 8)$
Bài 2:
Ta thấy:
\(x^2-4x+11=(x^2-4x+4)+7=(x-2)^2+7\geq 0, \forall x\)
\(x^4-8x^2+21=(x^4-8x^2+16)+5=(x^2-4)^2+5\geq 5, \forall x\)
Do đó:
\((x^2-4x+11)(x^4-8x^2+21)\geq 7.5=35\)
Dấu "=" xảy ra khi \((x-2)^2=(x^2-4)^2=0\Leftrightarrow x=2\)
Vậy.......
a) \(\left\{{}\begin{matrix}x+2y=-1\\x-y=5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3y=-6\\x-y=5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=-2\\x=3\end{matrix}\right.\)
Vậy..............................................................................
b) \(\left\{{}\begin{matrix}\frac{5}{x}-\frac{6}{y}=3\\\frac{4}{x}+\frac{9}{y}=7\end{matrix}\right.\)ĐKXĐ: x,y≠0
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{20}{x}-\frac{24}{y}=12\\\frac{20}{x}+\frac{45}{y}=35\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\frac{69}{y}=23\\\frac{20}{x}+\frac{45}{y}=35\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=10\end{matrix}\right.\)
Vậy...................................................................................
c) \(\left\{{}\begin{matrix}3\sqrt{x+1}+\sqrt{y-1}=1\\\sqrt{x+1}-\sqrt{y-1}=-2\end{matrix}\right.\)ĐKXĐ:\(\left\{{}\begin{matrix}x\ge-1\\y\ge1\end{matrix}\right.\)
\(\Rightarrow4\sqrt{x+1}\)\(=-1\)(vô nghiệm)
Vậy hệ pt vô nghiệm
d) Nhân 3 pt đầu rồi thu gọn
1. Đề này là 18 chứ không phải 15 nhé
\(\left\{{}\begin{matrix}\sqrt{x^2+x+y+1}+x+\sqrt{y^2+x+y+1}+y=18\left(1\right)\\\sqrt{x^2+x+y+1}-x+\sqrt{y^2+x+y+1}-y=2\left(2\right)\end{matrix}\right.\)
Lấy (1) + (2) và (1) - (2) ta được hệ mới
\(\left\{{}\begin{matrix}\sqrt{x^2+x+y+1}+\sqrt{y^2+x+y+1}=10\\x+y=8\end{matrix}\right.\)
\(\Rightarrow x=8-y\)
\(\Rightarrow\sqrt{x^2+9}+\sqrt{y^2+9}=10\)\(\Leftrightarrow\sqrt{x^2+9}=10-\sqrt{y^2+9}\)
\(\Leftrightarrow\left\{{}\begin{matrix}10-\sqrt{y^2+9}>0\\x^2+9=100-20\sqrt{y^2+9}+y^2+9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}10-\sqrt{y^2+9}>0\\x^2=100-20\sqrt{y^2+9}+y^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}10-\sqrt{y^2+9}>0\\\left(8-y\right)^2=100-20\sqrt{y^2+9}+y^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}10-\sqrt{y^2+9}>0\\9y^2-72y+144=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=4\\y=4\end{matrix}\right.\)
2. Dễ thấy x = y = 0 không phải là nghiệm của phương trình
HPT\(\Leftrightarrow\left\{{}\begin{matrix}1-\dfrac{12}{y+3x}=\dfrac{2}{\sqrt{x}}\left(1\right)\\1+\dfrac{12}{y+3x}=\dfrac{6}{\sqrt{y}}\left(2\right)\end{matrix}\right.\)
Lấy (1) + (2) ; (1) - (2) ta được
\(\left\{{}\begin{matrix}1=\dfrac{1}{\sqrt{x}}+\dfrac{3}{\sqrt{y}}\left(3\right)\\\dfrac{12}{y+3x}=\dfrac{3}{\sqrt{y}}-\dfrac{1}{\sqrt{x}}\left(4\right)\end{matrix}\right.\)
Lấy ( 3) nhân (4)
\(\dfrac{12}{y+3x}=\dfrac{9}{y}-\dfrac{1}{x}=\dfrac{9x-y}{xy}\)
\(\Leftrightarrow27x^2-6xy-y^2=0\Leftrightarrow\left(9x+y\right)\left(3x-y\right)=0\)
\(\Rightarrow y=3x\)
đến đây thì dễ rồi
ĐKXĐ: ...
Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\ge0\\\sqrt{y}=b\ge0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a^2b+ab^2=30\\a^3+b^3=35\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3a^2b+3ab^2=90\\a^3+b^3=35\end{matrix}\right.\)
\(\Rightarrow\left(a+b\right)^3=125\Rightarrow a+b=5\)
Cũng từ \(a^2b+ab^2=30\Rightarrow ab\left(a+b\right)=30\Rightarrow ab=\dfrac{30}{a+b}=6\)
Theo Viet đảo, a và b là nghiệm của:
\(t^2-5t+6=0\Rightarrow\left[{}\begin{matrix}t=2\\t=3\end{matrix}\right.\)
\(\Rightarrow\left(a;b\right)=...\Rightarrow x;y\)