\(\left\{{}\begin{matrix}\dfrac{3x}{2}+y=0\\x-y=-1\end{matrix}\right.\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\Leftrightarrow\left\{{}\begin{matrix}x\cdot\dfrac{5}{2}=-1\\x-y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{2}{5}\\y=x+1=-\dfrac{2}{5}+1=\dfrac{3}{5}\end{matrix}\right.\)

3 tháng 3 2022

\(\left\{{}\begin{matrix}\dfrac{3}{2}x+y=0\\x-y=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{2}x=-1\\x-y=-1\end{matrix}\right.\)  ( cộng đại số nhé pạn )

\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{2}{5}\\-\dfrac{2}{5}-y=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{2}{5}\\y=\dfrac{3}{5}\end{matrix}\right.\)

27 tháng 2 2018

(1) + rút y từ pt (2) thay vào pt (1), ta được pt bậc hai 1 ẩn x, dễ rồi, tìm x rồi suy ra y

(2) + (3)

+ pt nào có nhân tử chung thì đặt nhân tử chung (thật ra chỉ có pt (2) của câu 2 là có nhân từ chung)

+ trong hệ, thấy biểu thức nào giống nhau thì đặt cho nó 1 ẩn phụ

VD hệ phương trình 3: đặt a= x+y ; b= căn (x+1)

+ khi đó ta nhận được một hệ phương trình bậc nhất hai ẩn, giải hpt đó rồi suy ra x và y

3 tháng 2 2019

a)\(\Leftrightarrow\left\{{}\begin{matrix}12x+16y=-1\\3x+4y=-2\end{matrix}\right.\)(vô nghiệm)

Vậy hpt vô nghiệm.

b)\(\left\{{}\begin{matrix}\dfrac{5x-1}{5y-1}=\dfrac{1}{2}\\5x-7y=-9\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}10x-2=10y-1\\5x-7y=-9\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}10x-10y=1\\5x-7y=-9\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{97}{20}\\y=\dfrac{19}{4}\end{matrix}\right.\)

Vậy hpt có tập nghiệm là \(\left(\dfrac{97}{20};\dfrac{19}{4}\right)\).

27 tháng 7 2018

\(a.\left\{{}\begin{matrix}3x+y=-2\\-9x-39=6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=-2-3x\\-9x-36=6\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=-2-3x\\-9x=45\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=-2-3x\\x=-5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=13\end{matrix}\right.\)

\(b.\left\{{}\begin{matrix}x+y=101\\-x+y=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=101-y\\-x+y=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=101-y\\-101+y+y=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=101-y\\2y=100\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=101-y\\y=50\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=51\\y=50\end{matrix}\right.\)

\(c.\left\{{}\begin{matrix}x+y=2\\\dfrac{1}{2}x+y=\dfrac{5}{4}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2-y\\\dfrac{1}{2}x+y=\dfrac{5}{4}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2-y\\1-\dfrac{1}{2}y+y=\dfrac{5}{4}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2-y\\\dfrac{1}{2}y=\dfrac{1}{4}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2-y\\y=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=\dfrac{1}{2}\end{matrix}\right.\)

1 tháng 1 2018

1. Đề này là 18 chứ không phải 15 nhé

\(\left\{{}\begin{matrix}\sqrt{x^2+x+y+1}+x+\sqrt{y^2+x+y+1}+y=18\left(1\right)\\\sqrt{x^2+x+y+1}-x+\sqrt{y^2+x+y+1}-y=2\left(2\right)\end{matrix}\right.\)

Lấy (1) + (2) và (1) - (2) ta được hệ mới

\(\left\{{}\begin{matrix}\sqrt{x^2+x+y+1}+\sqrt{y^2+x+y+1}=10\\x+y=8\end{matrix}\right.\)

\(\Rightarrow x=8-y\)

\(\Rightarrow\sqrt{x^2+9}+\sqrt{y^2+9}=10\)\(\Leftrightarrow\sqrt{x^2+9}=10-\sqrt{y^2+9}\)

\(\Leftrightarrow\left\{{}\begin{matrix}10-\sqrt{y^2+9}>0\\x^2+9=100-20\sqrt{y^2+9}+y^2+9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}10-\sqrt{y^2+9}>0\\x^2=100-20\sqrt{y^2+9}+y^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}10-\sqrt{y^2+9}>0\\\left(8-y\right)^2=100-20\sqrt{y^2+9}+y^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}10-\sqrt{y^2+9}>0\\9y^2-72y+144=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=4\\y=4\end{matrix}\right.\)

1 tháng 1 2018

2. Dễ thấy x = y = 0 không phải là nghiệm của phương trình

HPT\(\Leftrightarrow\left\{{}\begin{matrix}1-\dfrac{12}{y+3x}=\dfrac{2}{\sqrt{x}}\left(1\right)\\1+\dfrac{12}{y+3x}=\dfrac{6}{\sqrt{y}}\left(2\right)\end{matrix}\right.\)

Lấy (1) + (2) ; (1) - (2) ta được

\(\left\{{}\begin{matrix}1=\dfrac{1}{\sqrt{x}}+\dfrac{3}{\sqrt{y}}\left(3\right)\\\dfrac{12}{y+3x}=\dfrac{3}{\sqrt{y}}-\dfrac{1}{\sqrt{x}}\left(4\right)\end{matrix}\right.\)

Lấy ( 3) nhân (4)

\(\dfrac{12}{y+3x}=\dfrac{9}{y}-\dfrac{1}{x}=\dfrac{9x-y}{xy}\)

\(\Leftrightarrow27x^2-6xy-y^2=0\Leftrightarrow\left(9x+y\right)\left(3x-y\right)=0\)

\(\Rightarrow y=3x\)

đến đây thì dễ rồi

a: \(\Leftrightarrow\left\{{}\begin{matrix}\left(x+2\right)\left(y+3\right)-xy=100\\xy-\left(x-2\right)\left(y-2\right)=64\end{matrix}\right.\)

=>xy+3x+2y+6-xy=100 và xy-xy+2x+2y-4=64

=>3x+2y=94 và 2x+2y=68

=>x=26 và x+y=34

=>x=26 và y=8

b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3x+3+2}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x+2-2}{x+1}-\dfrac{5y+20-11}{y+4}=9\end{matrix}\right.\)

=>\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x+1}-\dfrac{2}{y+4}=4-3=1\\\dfrac{-2}{x+1}+\dfrac{11}{y+4}=9+5-2=12\end{matrix}\right.\)

=>x+1=18/35; y+4=9/13

=>x=-17/35; y=-43/18

a: \(\left\{{}\begin{matrix}3x-2y=1\\2x+4y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x-4y=2\\2x+4y=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}8x=5\\3x-2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{8}\\2y=3x-1=\dfrac{15}{8}-1=\dfrac{7}{8}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{8}\\y=\dfrac{7}{16}\end{matrix}\right.\)

b: \(\left\{{}\begin{matrix}4x-3y=1\\-x+2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x-3y=1\\-4x+8y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=-1+2y=-1+2=1\end{matrix}\right.\)

c: \(\left\{{}\begin{matrix}\dfrac{2}{3}x+\dfrac{4}{3}y=1\\\dfrac{1}{2}x-\dfrac{3}{4}y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+4y=3\\2x-3y=8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{41}{14}\\y=-\dfrac{5}{7}\end{matrix}\right.\)

5 tháng 1 2019

Hỏi đáp ToánCòn lại tương tự

6 tháng 1 2019

có mấy bài sau k

cho mình xinn

31 tháng 10 2017

Mấy bài này đơn giản , bạn chỉ cần rút x hoặc y ra là đc

mk làm ví dụ một câu ha

\(\left\{{}\begin{matrix}x+2y=1\\-3x-y=2\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}x=1-2y\left(1\right)\\-3x-y=2\left(2\right)\end{matrix}\right.\)

Thay (1) vào bt (2) ta có -3(1-2y)-y=2

Bạn giải ra y rồi giải ra x là xong