K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2019

\(\left\{{}\begin{matrix}\dfrac{4}{x}+\dfrac{5}{y}=\dfrac{2}{3}\\\dfrac{5}{x}+\dfrac{4}{y}=\dfrac{41}{60}\end{matrix}\right.\left(I\right)\)

Đặt \(:\left\{{}\begin{matrix}t=\dfrac{1}{x}\\u=\dfrac{1}{y}\end{matrix}\right.\)

\(\left(I\right):\left\{{}\begin{matrix}4t+5u=\dfrac{2}{3}\\5t+4u=\dfrac{41}{60}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}20t+25u=\dfrac{10}{3}\\20t+16u=\dfrac{41}{15}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}9u=\dfrac{3}{5}\\20t+16u=\dfrac{41}{15}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}u=\dfrac{1}{15}\\t=\dfrac{1}{12}\end{matrix}\right.\)

Với \(:\left\{{}\begin{matrix}t=\dfrac{1}{12}\\u=\dfrac{1}{15}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{12}\\\dfrac{1}{y}=\dfrac{1}{15}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=12\\y=15\end{matrix}\right.\)

Vậy nghiệm hệ phương trình là \(\left(12;15\right)\)

22 tháng 6 2018

Ta có: \(\hept{\begin{cases}\left(\frac{1}{x}+y\right)+\left(\frac{1}{x}-y\right)=\frac{5}{8}\\\left(\frac{1}{x}+y\right)-\left(\frac{1}{x}-y\right)=-\frac{3}{8}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{2}{x}=\frac{5}{8}\\2y=-\frac{3}{8}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{16}{5}\\y=-\frac{3}{16}\end{cases}}}\)

1 tháng 2 2020

HPT : \(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{5}{36}\\\frac{4}{x}+\frac{3}{y}=\frac{1}{2}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{3}{x}+\frac{3}{y}=\frac{5}{12}\left(1\right)\\\frac{4}{x}+\frac{3}{y}=\frac{1}{2}\left(2\right)\end{cases}}\)

Từ (1) và (2), lấy vế trừ vế ta được :

\(\Leftrightarrow\left(\frac{4}{x}+\frac{3}{y}\right)-\left(\frac{3}{x}+\frac{3}{y}\right)=\frac{1}{2}-\frac{5}{12}\)

\(\Leftrightarrow\frac{1}{x}=\frac{1}{12}\)

\(\Leftrightarrow\frac{1}{y}=\frac{5}{36}-\frac{1}{x}=\frac{5}{36}-\frac{1}{12}=\frac{1}{18}\)

\(\Leftrightarrow\hept{\begin{cases}x=12\\y=18\end{cases}}\)

bài 3 là giải 2 hệ p~ ko

21 tháng 3 2020

\(\hept{\begin{cases}5|x-1|-3|y+2|=7\\2\sqrt{4x^2-8x+4}+5\sqrt{y^2+4y+4}=13\end{cases}}\)

<=>\(\hept{\begin{cases}5|x-1|-3|y+2|=7\\2\sqrt{4\left(x-1\right)^2}+5\sqrt{\left(y+2\right)^2}=13\end{cases}}\)

<=> \(\hept{\begin{cases}5|x-1|-3|y+2|=7\\4\left|x-1\right|+5\left|y+2\right|=13\end{cases}}\)

<=> \(\hept{\begin{cases}\left|x-1\right|=2\\\left|y+2\right|=1\end{cases}}\)

Giải: |x - 1 | = 2  <=> \(x-1=\pm2\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)

Giải: \(\left|y+2\right|=1\Leftrightarrow\orbr{\begin{cases}y+2=1\\y+2=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=-1\\y=-3\end{cases}}\)

Vậy hệ có tập nghiệm : S = { ( -1; -1) , (-1; -3) ; ( 3; -1) ; (3; -3 )}

2 tháng 2 2018

2/ a/ 

\(\hept{\begin{cases}x-\sqrt{y+\sqrt{y-\frac{1}{4}}}=\frac{1}{2}\\y-\sqrt{x+\sqrt{x-\frac{1}{4}}}=\frac{1}{2}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x-\sqrt{\left(\sqrt{y-\frac{1}{4}}+\frac{1}{2}\right)^2}=\frac{1}{2}\\y-\sqrt{\left(\sqrt{x-\frac{1}{4}}+\frac{1}{2}\right)^2}=\frac{1}{2}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x-\sqrt{y-\frac{1}{4}}-\frac{1}{2}=\frac{1}{2}\\y-\sqrt{x-\frac{1}{4}}-\frac{1}{2}=\frac{1}{2}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x-\sqrt{y-\frac{1}{4}}=1\\y-\sqrt{x-\frac{1}{4}}=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x^2-2x+1=y-\frac{1}{4}\left(1\right)\\y^2-2y+1=x-\frac{1}{4}\left(2\right)\end{cases}}\)

Lấy (1) - (2) ta được

\(\Rightarrow\left(x-y\right)\left(x+y-1\right)=0\)

Làm nốt

2 tháng 2 2018

Câu 2/b Hệ chỉ có 2 cái thôi hả

13 tháng 8 2019

HPT \(\Leftrightarrow\left\{{}\begin{matrix}x^3+y^3+x^2y+xy^2=5\\x^3+y^3-x^2y-xy^2=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^3+y^3=4\\x^2y+xy^2=1\end{matrix}\right.\)

\(\Leftrightarrow x^3+y^3+3x^2y+3xy^2=4+3=7\)

\(\Leftrightarrow\left(x+y\right)^3=7\Leftrightarrow x+y=\sqrt[3]{7}\Leftrightarrow x=\sqrt[3]{7}-y\)(1)

Đến đây bạn thay (1) vào một trong những phương trình trên kia để tìm x , y. Số xấu quá nên mình cũng lười làm lắm.

27 tháng 7 2016

a, \(P=\left(x^4-8x^3+16x^2\right)+12x^2-48x+35\)

\(=\left(x^2-4x\right)^2+12\left(x^2-4x\right)+36-1\)

\(=\left(x^2-4x+6\right)^2-1\)

\(=\left[\left(x-2\right)^2+2\right]^2-1\)

\(\ge2^2-1=3\)

Cách khác \(P=\left(x-2\right)^2\left[\left(x-2\right)^2+4\right]+3\ge3\)

Đẳng thức xảy ra khi \(x=2.\)

b, \(xy\le\frac{\left(x+y\right)^2}{4}=9\)

Áp dụng bđt Co6si: \(\frac{1}{x^2}+\frac{1}{y^2}\ge2\sqrt{\frac{1}{x^2}.\frac{1}{y^2}}=\frac{2}{xy}\)

\(Q\ge\frac{102}{xy}+xy=xy+\frac{81}{xy}+\frac{21}{xy}\ge2\sqrt{xy.\frac{81}{xy}}+\frac{21}{9}=\frac{61}{3}.\)

Dấu bằng xảy ra khi \(x=y=3.\)

28 tháng 7 2016

Mk camon bn nhiều nha =))