K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2018

\(pt\left(2\right)\Leftrightarrow x^2+\left(1-x\right)^2-13=0\)

\(\Rightarrow x^2+1-2x+x^2-13=0\)

\(\Rightarrow2x^2-2x-12=0\)

\(\Rightarrow x^2-x-6=0\)

\(\Delta=1^2-4.1.\left(-6\right)=1+24=25>0\)

\(\Delta>0\) thì pt có 2 nghiệm phân biệt: \(\left\{{}\begin{matrix}x_1=\dfrac{1-5}{2}=-2\\x_2=\dfrac{1+5}{2}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y_1=3\\y_2=-2\end{matrix}\right.\)

Vậy \(\left(x;y\right)\rightarrow\left(3;-2\right);\left(-2;3\right)\)

21 tháng 5 2018

\(\left\{{}\begin{matrix}x+y=1\\x^2+y^2=13\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=1\\\left(x+y\right)^2-2xy=13\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=1\\1-2xy=13\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=1\\xy=-6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=1-y\\\left(1-y\right)y=-6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=1-y\left(1\right)\\y-y^2+6=0\left(2\right)\end{matrix}\right.\)

Giải phương trình (2) ta được y = 3 và y = -2.

Thay vào (1) ta được lần lượt x = -2 và x = 3

7 tháng 10 2021

\(1,\Leftrightarrow\left\{{}\begin{matrix}x=3-y\\3-y+2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3-y\\y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\\ 2,\Leftrightarrow\left\{{}\begin{matrix}x-2x-1=3\\y=2x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=2\left(-2\right)+1=-3\end{matrix}\right.\\ 3,\Leftrightarrow\left\{{}\begin{matrix}2x+3x-6=4\\y=x-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\\ 4,\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\y+2=3y+8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-3\end{matrix}\right.\\ 5,\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1+y}{2}\\\dfrac{3+3y}{2}-4y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1+y}{2}\\3+3y-8y=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{y+1}{2}\\y=-\dfrac{1}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{5}\\y=-\dfrac{1}{5}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
31 tháng 1

Câu 1:

Từ PT(1) suy ra $x=7-2y$. Thay vào PT(2):

$(7-2y)^2+y^2-2(7-2y)y=1$
$\Leftrightarrow 4y^2-28y+49+y^2-14y+4y^2=1$

$\Leftrightarrow 9y^2-42y+48=0$

$\Leftrightarrow (y-2)(9y-24)=0$

$\Leftrightarrow y=2$ hoặc $y=\frac{8}{3}$

Nếu $y=2$ thì $x=7-2y=3$
Nếu $y=\frac{8}{3}$ thì $x=7-2y=\frac{5}{3}$

AH
Akai Haruma
Giáo viên
31 tháng 1

Câu 3: Bạn xem lại PT(2) là -x+y đúng không?

Câu 4:

$x^3-y^3=7$
$\Leftrightarrow (x-y)^3-3xy(x-y)=7$

$\Leftrightarrow 3^3-9xy=7$

$\Leftrightarrow xy=\frac{20}{9}$

Áp dụng định lý Viet đảo, với $x+(-y)=3$ và $x(-y)=\frac{-20}{9}$ thì $x,-y$ là nghiệm của pt:

$X^2-3X-\frac{20}{9}=0$

$\Rightarrow (x,-y)=(\frac{\sqrt{161}+9}{6}, \frac{-\sqrt{161}+9}{6})$ và hoán vị

$\Rightarrow (x,y)=(\frac{\sqrt{161}+9}{6}, \frac{\sqrt{161}-9}{6})$ và hoán vị.

 

NV
8 tháng 8 2021

\(x^3+y^3+3xy=1\Leftrightarrow\left(x+y\right)^3-1-3xy\left(x+y\right)+3xy=0\)

\(\Leftrightarrow\left(x+y-1\right)\left[\left(x+y\right)^2+x+y+1\right]-3xy\left(x+y-1\right)=0\)

\(\Leftrightarrow\left(x+y-1\right)\left(x^2+y^2-xy+x+y+1\right)=0\)

\(\Leftrightarrow\left(x+y-1\right)\left[\left(x-y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2\right]=0\)

\(\Rightarrow\left[{}\begin{matrix}x+y-1=0\\x=y=-1\end{matrix}\right.\)

TH1: \(x=y=-1\) thế vào pt dưới kiểm tra ko thỏa mãn

TH2: \(y=1-x\) thế vào pt dưới:

\(\sqrt{\left(4-x\right)\left(x+12\right)}=\dfrac{27}{x+3}\) (ĐKXĐ: \(-12\le x\le4;x\ne-3\))

- Với \(x< -3\) pt vô nghiệm, với \(x>-3\)

Đặt \(x+3=t>0\)

\(\Rightarrow\sqrt{\left(t+9\right)\left(7-t\right)}=\dfrac{27}{t}\Leftrightarrow64-\left(t+1\right)^2=\dfrac{27^2}{t^2}\)

\(\Leftrightarrow64=\dfrac{27^2}{t^2}+\left(t+1\right)^2=\dfrac{25^2}{t^2}+t^2+\dfrac{104}{t^2}+t+t+1\ge2\sqrt{\dfrac{25^2t^2}{t^2}}+3\sqrt[3]{\dfrac{104t^2}{t^2}}+1>65\) (vô lý)

Vậy hệ vô nghiệm

31 tháng 10 2017

Mấy bài này đơn giản , bạn chỉ cần rút x hoặc y ra là đc

mk làm ví dụ một câu ha

\(\left\{{}\begin{matrix}x+2y=1\\-3x-y=2\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}x=1-2y\left(1\right)\\-3x-y=2\left(2\right)\end{matrix}\right.\)

Thay (1) vào bt (2) ta có -3(1-2y)-y=2

Bạn giải ra y rồi giải ra x là xong

29 tháng 12 2021

d: \(\Leftrightarrow\left\{{}\begin{matrix}x+y=1\\4x+3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x+4y=4\\4x+3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=2\end{matrix}\right.\)

30 tháng 9 2023

Bài 1:

Đặt: \(\left\{{}\begin{matrix}u=\dfrac{1}{2x-2}\\v=\dfrac{1}{y-1}\end{matrix}\right.\) (ĐK: \(x,y\ne1\))  

Hệ trở thành:

\(\Leftrightarrow\left\{{}\begin{matrix}u-v=2\\3u-2v=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3u-3v=6\\3u-2v=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-v=5\\u-v=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}v=-5\\u=2+-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}v=-5\\u=-3\end{matrix}\right.\)

Trả lại ẩn của hệ pt:

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{y-1}=-5\\\dfrac{1}{2x-2}=-3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y-1=-\dfrac{1}{5}\\2x-2=-\dfrac{1}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{4}{5}\\x=\dfrac{5}{6}\end{matrix}\right.\left(tm\right)\)

NV
27 tháng 7 2021

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(y-1\right)\left(x+y-2\right)=6\\\left(x-1\right)^2+\left(y-1\right)^2=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(y-1\right)\left(x+y-2\right)=6\\\left(x+y-2\right)^2-2\left(x-1\right)\left(y-1\right)=5\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}\left(x-1\right)\left(y-1\right)=v\\x+y-2=u\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}uv=6\\u^2-2v=5\end{matrix}\right.\) \(\Rightarrow u^2-\dfrac{12}{u}=5\)

\(\Rightarrow u^3-5u-12=0\)

\(\Leftrightarrow\left(u-3\right)\left(u^2+3u+4\right)=0\)

\(\Leftrightarrow u=3\Rightarrow v=2\)

\(\Rightarrow\left\{{}\begin{matrix}x+y-2=3\\\left(x-1\right)\left(y-1\right)=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=5-x\\\left(x-1\right)\left(y-1\right)=2\end{matrix}\right.\)

\(\Rightarrow\left(x-1\right)\left(5-x-1\right)=2\)

\(\Leftrightarrow...\) em tự hoàn thành bài toán

27 tháng 7 2021

Mình không biết đúng hay không nhưng mình thay vào không đúng á.