K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 2 2019

Từ pt trên ta có: \(x^2+y=\left(3-y\right)x\) (1)

Biến đổi pt dưới:

\(x^4+2x^2y+y^2+x^2y-5x^2=0\Leftrightarrow\left(x^2+y\right)^2=\left(5-y\right)x^2\) (2)

Thế (1) vào (2) ta được:

\(\left(3-y\right)^2x^2=\left(5-y\right)x^2\Leftrightarrow x^2\left(y^2-5y+4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\y=1\\y=4\end{matrix}\right.\)

Với \(x=0\) thay vào pt đầu \(\Rightarrow y=0\)

Với \(y=1\) thay vào pt đầu: \(x^2-2x+1=0\Rightarrow x=1\)

Với \(y=4\) thay vào pt đầu \(x^2+x+4=0\) (vô nghiệm)

Vậy hệ đã cho có 2 cặp nghiệm \(\left(x;y\right)=\left(0;0\right);\left(1;1\right)\)

7 tháng 11 2021

\(1,\Leftrightarrow\left\{{}\begin{matrix}x=y+5\\2y+10+y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{16}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\\ 2,\Leftrightarrow\left\{{}\begin{matrix}3x=1-2y\\1-2y+y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\\ 3,\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\3y+6+2y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)

18 tháng 8 2021

các bn ơi giúp mình với

 

NV
27 tháng 3 2021

\(\Leftrightarrow\left\{{}\begin{matrix}y\left(xy-2\right)=3x^2\\x\left(xy+2\right)=-y^2\end{matrix}\right.\)

Nhận thấy \(\left(x;y\right)=\left(0;0\right)\) là 1 nghiệm

Với \(x;y\ne0\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy-2=\dfrac{3x^2}{y}\\xy+2=-\dfrac{y^2}{x}\end{matrix}\right.\) 

Nhân vế với vế: \(\left(xy-2\right)\left(xy+2\right)=-3xy\)

\(\Leftrightarrow\left(xy\right)^2+3xy-4=0\Rightarrow\left[{}\begin{matrix}xy=1\\xy=-4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=\dfrac{1}{x}\\y=-\dfrac{4}{x}\end{matrix}\right.\)

Thế vào pt dưới:

\(\Rightarrow\left[{}\begin{matrix}\dfrac{1}{x^2}+x+2x=0\\\dfrac{16}{x^2}-4x+2x=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}3x^3=-1\\x^3=8\end{matrix}\right.\) \(\Leftrightarrow...\)

AH
Akai Haruma
Giáo viên
4 tháng 9 2021

Lời giải:

Lấy $x.\text{PT(1)}+y.\text{PT(2)}$ thu được:
$3x^3+y^3=-2x^2y^2$

Lấy $x.\text{PT(1)}-y\text{PT(2)}$ thu được:

$3x^3-y^3=4xy$

$\Rightarrow y^3=-x^2y^2-2xy$

PT (2)$\Leftrightarrow 2x^2y+2y^2=-4x$

$\Leftrightarrow 2x^2y+y(xy^2+3x^2)=-4x$

$\Leftrightarrow x[2xy+y(y^2+3x)]=-4x$

$\Leftrightarrow x(y^3+5xy)=-4x$

$\Leftrightarrow x=0$ hoặc $y^3+5xy=-4$

Nếu $x=0$ thì dễ tìm $y=0$

Nếu $y^3+5xy=-4$

$\Leftrightarrow -x^2y^2-2xy+5xy=-4$

$\Leftrightarrow -(xy)^2+3xy+4=0$

$\Leftrightarrow (4-xy)(xy+1)=0$

$\Leftrightarrow xy=4$ hoặc $xy=-1$

Nếu $xy=4$ thì:

$y^3=-4-5xy=-24\Rightarrow y=\sqrt[3]{-24}$

$x^3=\frac{y^3+4xy}{3}=\frac{-8}{3}\Rightarrow x=\sqrt[3]{\frac{-8}{3}}$ (tm)

Nếu $xy=-1$ thì:

$y^3=-4-5xy=1\Rightarrow y=1$

$x^3=\frac{y^3+4xy}{3}=-1\Rightarrow x=-1$ (tm)

Vậy..........

NV
5 tháng 10 2021

\(x^2-2y^2+xy-3x+3y=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+2y\right)-3\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+2y-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=3-2y\end{matrix}\right.\)

Thay xuống pt dưới ...