Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2 \(\hept{\begin{cases}\frac{x^2+1}{y}=\frac{y^2+1}{y}\left(1\right)\\x^2+3y^2=4\left(2\right)\end{cases}}\)
ĐK \(x,y\ne0\)
Từ \(\frac{y^2+1}{y}=\frac{x^2+1}{x}\Leftrightarrow xy^2+x=x^2y+y\Leftrightarrow\left(xy-1\right)\left(x-y\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x=y\\xy=1\end{cases}}\)
+ thay \(x=y\)vào (2) ta dc ..................
+xy=1 suy ra 1=1/y thay vao 2 ta dc............
a) \(ĐK:y-2x+1\ge0;4x+y+5\ge0;x+2y-2\ge0,x\le1\)
Th1: \(\hept{\begin{cases}y-2x+1=0\\3-3x=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}0=0\\-1=\sqrt{10}-1\end{cases}}\)(không thỏa mãn)
Th2: \(x,y\ne1\)
\(2x^2-y^2+xy-5x+y+2=\sqrt{y-2x+1}-\sqrt{3-3x}\)\(\Leftrightarrow\left(x+y-2\right)\left(2x-y-1\right)=\frac{x+y-2}{\sqrt{y-2x+1}+\sqrt{3-3x}}\)\(\Leftrightarrow\left(x+y-2\right)\left(\frac{1}{\sqrt{y-2x+1}+\sqrt{3-3x}}+y-2x+1\right)=0\)
Dễ thấy \(\frac{1}{\sqrt{y-2x+1}+\sqrt{3-3x}}+y-2x+1>0\)nên x + y - 2 = 0
Thay y = 2 - x vào phương trình \(x^2-y-1=\sqrt{4x+y+5}-\sqrt{x+2y-2}\), ta được: \(x^2+x-3=\sqrt{3x+7}-\sqrt{2-x}\)\(\Leftrightarrow x^2+x-2=\sqrt{3x+7}-1+2-\sqrt{2-x}\)\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=\frac{3\left(x+2\right)}{\sqrt{3x+7}+1}+\frac{x+2}{2+\sqrt{2-x}}\)\(\Leftrightarrow\left(x+2\right)\left(\frac{3}{\sqrt{3x+7}+1}+\frac{1}{2+\sqrt{2-x}}+1-x\right)=0\)
Vì \(x\le1\)nên\(\frac{3}{\sqrt{3x+7}+1}+\frac{1}{2+\sqrt{2-x}}+1-x>0\)suy ra x = -2 nên y = 4
Vậy nghiệm của hệ phương trình là (x;y) = (-2;4)
b) \(\hept{\begin{cases}x^2+y^2=5\\x^3+2y^3=10x-10y\end{cases}}\Leftrightarrow\hept{\begin{cases}2\left(x^2+y^2\right)=10\left(1\right)\\x^3+2y^3=10\left(x-y\right)\left(2\right)\end{cases}}\)
Thay (1) vào (2), ta được: \(x^3+2y^3=2\left(x^2+y^2\right)\left(x-y\right)\Leftrightarrow\left(2y-x\right)\left(x^2+2y^2\right)=0\)
* Th1: \(x^2+2y^2=0\)(*)
Mà \(x^2\ge0\forall x;2y^2\ge0\forall y\Rightarrow x^2+2y^2\ge0\)nên (*) xảy ra khi x = y = 0 nhưng cặp nghiệm này không thỏa mãn hệ
* Th2: 2y - x = 0 suy ra x = 2y thay vào (1), ta được: \(y^2=1\Rightarrow y=\pm1\Rightarrow x=\pm2\)
Vậy hệ có 2 nghiệm \(\left(x,y\right)\in\left\{\left(2;1\right);\left(-2;-1\right)\right\}\)
1/ĐKXĐ: \(x^2+4y+8\ge0\)
PT (1) \(\Leftrightarrow\left(x-2\right)\left(x-y+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=y-3\end{cases}}\)
+) Với x = 2, thay vào PT (2): \(4\sqrt{y^2+4}=y\sqrt{4y+12}\) (\(\text{ĐKXĐ:}y\ge-3\))
\(\Leftrightarrow\hept{\begin{cases}y\ge0\\16\left(y^2+4\right)=y^2\left(4y+12\right)\end{cases}}\Leftrightarrow\hept{\begin{cases}y\ge0\\4\left(y^3-y^2-16\right)=0\end{cases}}\)
\(\Rightarrow y=\frac{1}{3}\left(1+\sqrt[3]{217-12\sqrt{327}}+\sqrt[3]{217+12\sqrt{327}}\right)\)(nghiệm khổng lồ quá chả biết tính kiểu gì nên em nêu đáp án thôi:v)
Vậy...
+) Với x = y - 3, thay vào PT (2):
\(\left(y-1\right)\sqrt{y^2+4}=y\sqrt{y^2-2y+17}\)
\(\Rightarrow\left(y-1\right)^2\left(y^2+4\right)=y^2\left(y^2-2y+17\right)\)(Biến đổi hệ quả nên ta dùng dấu suy ra)
\(\Leftrightarrow4\left(1-3y\right)\left(y+1\right)=0\Leftrightarrow\orbr{\begin{cases}y=\frac{1}{3}\\y=-1\end{cases}}\)
Thử lại ta thấy chỉ có y = - 1 \(\Rightarrow x=y-3=-4\)
\(\hept{\begin{cases}x^3-8x=y^3+2y\\x^2-3y^2=6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}6\left(x^3-y^3\right)=6\left(8x+2y\right)\\x^2-3y^2=6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}6\left(x^3-y^3\right)=\left(x^2-3y^2\right)\left(8x+2y\right)\\x^2-3y^2=6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}24xy^2-2x^2y-2x^3=0\\x^2-3y^2=6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x\left(3y-x\right)\left(4y+x\right)=0\\x^2-3y^2=6\end{cases}}\)
Đơn giản rồi làm tiếp nhé
\(\hept{\begin{cases}5x^2-3y=x-3xy\\x^3-x^2=y^2-3y^3\end{cases}}\)
Với x = 0 thì y = 0
Với x \(\ne\)0 thì nhân pt trên cho x ta được
\(\Leftrightarrow\hept{\begin{cases}5x^3-3yx=x^2-3x^2y\left(1\right)\\x^3-x^2=y^2-3y^3\left(2\right)\end{cases}}\)
Lấy (1) + (2) vế theo vế được
\(\Leftrightarrow6x^3-3xy-x^2=x^2+y^2-3x^2y-3y^3\)
\(\Leftrightarrow6x^3-3xy-2x^2-y^2+3x^2y+3y^3=0\)
\(\Leftrightarrow\left(x+y\right)\left(3y^2-3xy-y+6x^2-2x\right)=0\)
Tới đây thì đơn giản roofin làm tiếp nhé
\(x^2-y^2+x-y=5\)\(\Leftrightarrow\left(x^2-y^2\right)+\left(x-y\right)=5\)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)+\left(x-y\right)=5\)
\(\Leftrightarrow\left(x-y\right)\left(x-y+1\right)=5\)
\(x^3-x^2y-xy^2+y^3=6\)
\(\Leftrightarrow\left(x^3+y^3\right)-\left(x^2y+xy^2\right)=6\)
\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)-xy\left(x+y\right)=6\)
\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2-xy\right)=6\)
\(\Leftrightarrow\left(x+y\right)\left(x^2-2xy+y^2\right)=6\)
\(\Leftrightarrow\left(x+y\right)\left(x-y\right)^2=6\)
c)
x2 - x - 6 = x2 +2x - 3x - 6
= x(x + 2) - 3(x + 2)
= (x + 2)(x - 3)
d)
x4 + 4 = x4 + 4x2 + 4 - 4x2
= (x2 + 2)2 - (2x)2
= (x2 + 2 - 2x)(x2 + 2 + 2x
\(\hept{\begin{cases}x^3+x+2=2y\left(1\right)\\3\left(x^2+x\right)=y^3-y\left(2\right)\end{cases}\Rightarrow x^3+x+2+3\left(x^2+x\right)=2y+y^3-y}\)
\(\Leftrightarrow x^3+3x^2+4x+2=y^3+y\Leftrightarrow\left(x+1\right)^3+\left(x+1\right)=y^3+y\)
\(\Leftrightarrow\left(x+1\right)^3-y^3+\left(x+1-y\right)=0\)
\(\Leftrightarrow\left(x+1-y\right)\left[\left(x+1\right)^2+\left(x+1\right)y+y^2+1\right]=0\)
\(\Leftrightarrow y=x+1\)thay vào (1):
\(x^3+x+2=2\left(x+1\right)\Leftrightarrow x^3-x=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)
Bạn tự tìm nốt nhé
\(8x^3+2xy^2=y^6+y^4\Leftrightarrow\left(\frac{2x}{y}\right)^3+\frac{2x}{y}=y^3+y\)(chia cả 2 vế cho y3)
\(\Rightarrow\frac{2x}{y}=y\)(giống ý trước)
\(\Rightarrow y^2=2x\)thay vào pt(2)
\(\sqrt{x+2}+\sqrt{2x+5}=5\Leftrightarrow\sqrt{x+2}-2+\sqrt{2x+5}-3=0\)
\(\Leftrightarrow\frac{x+2-4}{\sqrt{x+2}+2}+\frac{2x+5-9}{\sqrt{2x+5}+3}=0\)
\(\Leftrightarrow\left(x-2\right)\left[\frac{1}{\sqrt{x+2}+2}+\frac{2}{\sqrt{2x+5}+3}\right]=0\Leftrightarrow x=2\Rightarrow y=\pm2\)