K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2018

Cái này đâu khó lắm đâu bạn đăng làm gì 

x= 7/80 và y = 9/80

Cái này mà bạn phải hỏi ak

31 tháng 3 2018

Học gần cả năm mà câu đơn giản thế này lại đi hỏi

7 tháng 1 2018

a.\(\hept{\begin{cases}3x-2y=1\\2x+4y=3\end{cases}}\)

<=>\(\hept{\begin{cases}6x-4y=2\\2x+4y=3\end{cases}}\)

<=>\(\hept{\begin{cases}8x=5\\2x+4y=3\end{cases}}\)

<=>\(\hept{\begin{cases}x=\frac{5}{8}\\2\cdot\frac{5}{8}+4y=3\end{cases}}\)

<=>\(\hept{\begin{cases}x=\frac{5}{8}\\4y=\frac{7}{4}\end{cases}}\)

<=>\(\hept{\begin{cases}x=\frac{5}{8}\\y=\frac{7}{16}\end{cases}}\)

7 tháng 1 2018

a) \(\hept{\begin{cases}3x-2y=1\\2x+4y=3\end{cases}}\Rightarrow\hept{\begin{cases}6x-4y=2\\2x+4y=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}8x=5\\2x+4y=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{8}\\\frac{5}{4}+4y=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{5}{8}\\4y=\frac{7}{4}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{8}\\y=\frac{7}{16}\end{cases}}\)

vậy hpt có nghiệm duy nhất \(\left(x;y\right)=\left(\frac{5}{8};\frac{7}{16}\right)\)

b) \(\hept{\begin{cases}4x-3y=1\\-x+2y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}8x-6y=2\\-3x+6y=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}5x=5\\-3x+6y=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\-3+6y=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)

vậy hpt có nghiệm duy nhất \(\left(x;y\right)=\left(1;1\right)\)

4 tháng 2 2018

Đặt \(\frac{a+b}{6}=\frac{b+c}{7}=\frac{a+c}{8}=k\)

Do đó \(a+b=6k;b+c=7k;a+c=8k\)

Khi đó \(a+b+b+c+a+c=6k+7k+8k\)hay \(2.\left(a+b+c\right)=21k\)

Suy ra \(a+b+c=10,5k\)

Từ \(a+b+c=10,5k\)và \(a+b=6k\)nên \(c=4,5k\)

Từ \(a+b+c=10,5k\)và \(b+c=7k\)nên \(a=3,5k\)

Do vậy tính được \(b=2,5k\)

Thay \(a=3,5k\)\(b=2,5k\),\(c=4,5k\)vào \(a+b+c=14\)ta có 

\(3,5k+2,5k+4,5k=14\Rightarrow10,5k=14\Rightarrow k=\frac{4}{3}\)

Với \(k=\frac{4}{3}\)thì \(a=\frac{14}{3};b=\frac{10}{3};c=6\)

Vậy \(a=\frac{14}{3};b=\frac{10}{3};c=6\)thoả mãn phương trình

8 tháng 9 2017

\(\hept{\begin{cases}x+y=\frac{4x-3}{5}\\x+3y=\frac{15-9y}{14}\end{cases}\Leftrightarrow\hept{\begin{cases}x+y-\frac{4x}{5}=-\frac{3}{5}\\x+3y+\frac{9y}{14}=\frac{15}{14}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{5}+y=-\frac{3}{5}\\x+\frac{51y}{14}=\frac{15}{14}\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}x+5y=-3\\x+\frac{51y}{14}=\frac{15}{14}\end{cases}\Leftrightarrow5y-\frac{51y}{14}=-3-\frac{15}{14}\Leftrightarrow\frac{19}{14}y=-\frac{57}{14}\Rightarrow y=-3}\)

\(x-15=-3\Rightarrow x=12\)

Vậy \(x=12;y=-3\)

17 tháng 10 2020

a) \(ĐK:y-2x+1\ge0;4x+y+5\ge0;x+2y-2\ge0,x\le1\)

Th1: \(\hept{\begin{cases}y-2x+1=0\\3-3x=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}0=0\\-1=\sqrt{10}-1\end{cases}}\)(không thỏa mãn)

Th2: \(x,y\ne1\)

\(2x^2-y^2+xy-5x+y+2=\sqrt{y-2x+1}-\sqrt{3-3x}\)\(\Leftrightarrow\left(x+y-2\right)\left(2x-y-1\right)=\frac{x+y-2}{\sqrt{y-2x+1}+\sqrt{3-3x}}\)\(\Leftrightarrow\left(x+y-2\right)\left(\frac{1}{\sqrt{y-2x+1}+\sqrt{3-3x}}+y-2x+1\right)=0\)

Dễ thấy \(\frac{1}{\sqrt{y-2x+1}+\sqrt{3-3x}}+y-2x+1>0\)nên x + y - 2 = 0

Thay y = 2 - x vào phương trình \(x^2-y-1=\sqrt{4x+y+5}-\sqrt{x+2y-2}\), ta được: \(x^2+x-3=\sqrt{3x+7}-\sqrt{2-x}\)\(\Leftrightarrow x^2+x-2=\sqrt{3x+7}-1+2-\sqrt{2-x}\)\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=\frac{3\left(x+2\right)}{\sqrt{3x+7}+1}+\frac{x+2}{2+\sqrt{2-x}}\)\(\Leftrightarrow\left(x+2\right)\left(\frac{3}{\sqrt{3x+7}+1}+\frac{1}{2+\sqrt{2-x}}+1-x\right)=0\)

Vì \(x\le1\)nên\(\frac{3}{\sqrt{3x+7}+1}+\frac{1}{2+\sqrt{2-x}}+1-x>0\)suy ra x = -2 nên y = 4

Vậy nghiệm của hệ phương trình là (x;y) = (-2;4)

17 tháng 10 2020

b) \(\hept{\begin{cases}x^2+y^2=5\\x^3+2y^3=10x-10y\end{cases}}\Leftrightarrow\hept{\begin{cases}2\left(x^2+y^2\right)=10\left(1\right)\\x^3+2y^3=10\left(x-y\right)\left(2\right)\end{cases}}\)

Thay (1) vào (2), ta được: \(x^3+2y^3=2\left(x^2+y^2\right)\left(x-y\right)\Leftrightarrow\left(2y-x\right)\left(x^2+2y^2\right)=0\)

* Th1: \(x^2+2y^2=0\)(*)

Mà \(x^2\ge0\forall x;2y^2\ge0\forall y\Rightarrow x^2+2y^2\ge0\)nên (*) xảy ra khi x = y = 0 nhưng cặp nghiệm này không thỏa mãn hệ

* Th2: 2y - x = 0 suy ra x = 2y thay vào (1), ta được: \(y^2=1\Rightarrow y=\pm1\Rightarrow x=\pm2\) 

Vậy hệ có 2 nghiệm \(\left(x,y\right)\in\left\{\left(2;1\right);\left(-2;-1\right)\right\}\)

19 tháng 2 2017

làm ơn giúp mk vs ạ