K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2017

\(\left\{{}\begin{matrix}x^2y+2=y^2\\xy^2+2=x^2\end{matrix}\right.\)

☘ Trừ vế theo vế

\(\Rightarrow x^2y-xy^2=y^2-x^2\)

\(\Leftrightarrow xy\left(x-y\right)+\left(x-y\right)\left(x+y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+y+xy\right)=0\)

Trường hợp 1: \(x=y\)

Trường hợp 2: \(x+y+xy=0\)

\(\Leftrightarrow y\left(1+x\right)=-x\)

\(\Leftrightarrow y=-\dfrac{x}{1+x}\) thay vào phương trình thứ 2

\(\Rightarrow x\left(-\dfrac{x}{1+x}\right)^2+2=x^2\)

\(\Leftrightarrow x^3+2\left(1+x\right)^2-x^2\left(1+x\right)^2=0\)

\(\Leftrightarrow x^4+x^3-x^2-4x-2=0\)

\(\Leftrightarrow\left(x^2+2x+2\right)\left(x^2-x-1\right)=0\)

⚠ Tự giải tiếp nha. Mà chưa học hệ phương trình đối xưng gì đó nên không chắc đâu.

5 tháng 12 2017

Lấy pt (1)-pt(2) ta có:

\(x^2y-xy^2=y^2-x^2\)

<=>\(xy(x-y)+(x-y)(x+y)=0\)

<=>\((x-y)(x+y+xy)=0\)

=>x=y hoặc x+y+xy=0=>y(x+1)=-x=>y=\(\frac{-x}{x+1} \)

Với x=y

=>\(x^3-x^2+2=0\)

=>x=-1

=>y=-1

Với y=\(\frac{-x}{x+1} \)

=>\(\frac{-x^3}{x+1} +2-\frac{x^2}{(x+1)^2}=0 \)

tự giải nốt nha

AH
Akai Haruma
Giáo viên
6 tháng 12 2023

Lời giải:

HPT tương đương:

\(\left\{\begin{matrix} 2x^2y=y^2+1\\ 2xy^2=x^2+1\end{matrix}\right.\)

Trừ hai pt cho nhau thì:

$2xy(x-y)+x^2-y^2=0$

$\Leftrightarrow 2xy(x-y)+(x-y)(x+y)=0$

$\Leftrightarrow (x-y)(2xy+x+y)=0$

$\Leftrightarrow x-y=0$ hoặc $2xy+x+y=0$

Nếu $x-y=0\Leftrightarrow x=y$. Thay vào pt (1):

$2x^2=x+\frac{1}{x}$

$\Rightarrow 2x^3=x^2+1$

$\Leftrightarrow (x-1)(2x^2+x+1)=0$

Đến đấy thì đơn giản rồi.

Nếu $2xy+x+y=0$:

Từ $2x^2=y+\frac{1}{y}=\frac{y^2+1}{y}$

Mà $2x^2>0; y^2+1>0$ với mọi $x,y\neq 0$ nên $y>0$

Tương tự $x>0$

$\Rightarrow 2xy+x+y>0$. Do đó TH này loại

Vậy...........

 

3 tháng 12 2023

\(\left\{{}\begin{matrix}x^3+y^2=2y\left(1\right)\\y^3+x^2=2x\left(2\right)\end{matrix}\right.\)

Lấy (1)-(2), ta được:

\(x^3-y^3-\left(x^2-y^2\right)+2\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2-x-y+2\right)=0\)

*Với \(x=y\). Từ (1) ta có: \(x^3+x^2-2x=0\)

Giải ra ta được: \(\left[{}\begin{matrix}x=0\\x=1\\x=-2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=0\\y=1\\y=-2\end{matrix}\right.\)

*Với \(x^2+xy+y^2=x+y-2\). Đặt \(S=x+y;P=xy\).

Khi đó ta có: \(S^2-S+2=P\left(1'\right)\)

Lấy (1)+(2) ta được:

\(x^3+y^3+x^2+y^2=2\left(x+y\right)\)

\(\Rightarrow S^3-3SP+S^2-2P=2S\left(2'\right)\)

Thay (1') vào (2'), ta được:

\(S^3-3S\left(S^2-S+2\right)+S^2-2\left(S^2-S+2\right)=2S\)

\(\Leftrightarrow-2S^3+2S^2-6S-4=0\)

\(\Leftrightarrow S^3-S^2+3S+2=0\)

Đến đây mình bấm máy và nó ra nghiệm xấu ;)) bạn thử kiểm tra lại cách rút gọn của mình xem có gì sai sót nhé. Từ đây ta tìm được S, rồi tìm được P và sử dụng định lí Viète đảo để tính x,y nhé.

22 tháng 7 2020
https://i.imgur.com/Cc0M1NM.jpg
22 tháng 7 2020
https://i.imgur.com/s6RzLH6.jpg
2 tháng 12 2020

1.

\(\left\{{}\begin{matrix}x^3+y^3+x^3y^3=17\\x+y+xy=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^3-3xy\left(x+y\right)+x^3y^3=17\\x+y+xy=5\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x+y=a\\xy=b\end{matrix}\right.\left(a^2\ge4b\right)\)

Hệ phương trình trở thành \(\left\{{}\begin{matrix}a^3-3ab+b^3=17\\a+b=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(a+b\right)^3-3ab\left(a+b+1\right)=17\\a+b=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}ab=6\\a+b=5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}a=2;b=3\left(l\right)\\a=3;b=2\end{matrix}\right.\)

\(\left\{{}\begin{matrix}a=3\\b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=3\\xy=2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\end{matrix}\right.\)

2 tháng 12 2020

2.

\(\left\{{}\begin{matrix}x^3+y^3=2\\xy\left(x+y\right)=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^3-3xy\left(x+y\right)=2\\xy\left(x+y\right)=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^3-6=2\\xy\left(x+y\right)=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^3=8\\xy\left(x+y\right)=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=2\\xy\left(x+y\right)=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=2\\xy=1\end{matrix}\right.\)

\(\Leftrightarrow x=y=1\)

3 tháng 3 2019

1)Điều kiện: \(x + y > 0\)\((1) \Leftrightarrow (x + y)^2 - 2xy + \dfrac{2xy}{x + y} - 1 = 0 \\ \Leftrightarrow (x + y)^3 - 2xy(x + y) + 2xy -(x + y) = 0 \\ \Leftrightarrow (x+y)[(x+y)^2- 1]-2xy(x+y-1)=0 \\ \Leftrightarrow (x+y)(x+y+1)(x+y-1)-2xy(x+y-1)=0 \\ \Leftrightarrow (x + y - 1)[(x+y)(x + y + 1)-2xy] = 0 \\ \Leftrightarrow \left[ \begin{matrix}x + y = 1 \,\, (3) \\ x^2+y^2+x+y=0 \,\, (4) \end{matrix} \right.\)(4) vô nghiệm vì x + y > 0

Thế (3) vào (2) , giải được nghiệm của hệ :\((x =1 ; y = 0)\)\((x = -2 ; y = 3)\)

3 tháng 3 2019

\((1)\Leftrightarrow (x-2y)+(2x^3-4x^2y)+(xy^2-2y^3)=0\)\(\Leftrightarrow (x-2y)(1+2x^2+y^2)=0\)

\(\Leftrightarrow x=2y\)(vì \(1+2x^2+y^2>0, \forall x,y\))

Thay vào phương trình (2) giải dễ dàng.

11 tháng 8 2017

1/ \(\left\{{}\begin{matrix}x^3+y^3=1\left(1\right)\\x^2y+2xy^2+y^3=2\left(2\right)\end{matrix}\right.\)

Lấy (1). 2 - (2) ta được:

\(2x^3+y^3-x^2y-2xy^2=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)\left(2x-y\right)=0\)

Đến đây dễ rồi nhé ^^

2/ Ta viết lại pt thứ 2 của hệ:

\(y^2-4\left(x+2\right)y+16+16x-5x^2=0\)

\(\Leftrightarrow y^2-4\left(x+2\right)y+4\left(x+2\right)^2-9x^2=0\)

\(\Leftrightarrow\left[y-2\left(x+2\right)\right]^2-\left(3x\right)^2=0\)

\(\Leftrightarrow\left(x+y-4\right)\left(y-5x-4\right)=0\)

Bạn làm tiếp nhé!

11 tháng 8 2017

3/ Ta viết lại pt thứ nhất của hệ

\(x^2-x\left(2y-3\right)+y^2-3y-4=0\)

\(\Leftrightarrow x^2-x\left(2y-3\right)+\dfrac{4y^2-12y+9}{4}-\dfrac{25}{4}=0\)

\(\Leftrightarrow\left(x-\dfrac{2y+3}{2}\right)^2-\left(\dfrac{5}{2}\right)^2=0\)

\(\Leftrightarrow\left(x-y-4\right)\left(x-y+1\right)=0\)

Bạn làm tiếp được chứ?

4/ Viết lại pt thứ 2 của hệ

\(\left(y+\sqrt{x}\right)^2-\left(y\sqrt{x}\right)^2=0\)

\(\Leftrightarrow\left(y-\sqrt{x}-y\sqrt{x}\right)\left(y-\sqrt{x}+y\sqrt{x}\right)=0\)