Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\frac{x}{y}=\frac{3}{4}\Rightarrow4x=3y\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{2x+5y}{6+20}=\frac{10}{26}=\frac{5}{13}\)
\(x=\frac{5}{13}.3=\frac{15}{13}\)
\(y=\frac{5}{13}.4=\frac{20}{13}\)
b) Ta có: \(21x=19y\Rightarrow\frac{x}{19}=\frac{y}{21}=\frac{x-y}{19-21}=\frac{4}{-2}=-2\)
x = (-2) x 19 = -38
y = (-2) x 21 = -42
c) Ta có: \(\frac{x}{5}=\frac{y}{3}\Rightarrow\frac{x^2}{5^2}=\frac{y^2}{3^2}=\frac{x^2-y^2}{5^2-3^2}=\frac{4}{16}=\frac{1}{4}\)
\(x^2=\frac{1}{4}.25=\frac{25}{4}\Rightarrow x=+_-\frac{5}{2}\)
\(y^2=\frac{1}{4}.9=\frac{9}{4}\Rightarrow+_-\frac{3}{2}\)
nha bạn!
\(\frac{x}{y}=\frac{3}{4}\)và 2x + 5y = 10
=> \(\frac{x}{3}=\frac{y}{4}\)=> \(\frac{2x}{6}=\frac{5y}{20}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{2x}{6}=\frac{5y}{20}=\frac{2x+5y}{6+20}=\frac{10}{26}=\frac{5}{13}\)
=> 2x = \(\frac{30}{13}\)=> x = \(\frac{15}{13}\)
5y = \(\frac{100}{13}\)=> y = \(\frac{20}{13}\)
Vậy x = \(\frac{15}{13}\); y = \(\frac{20}{13}\)
21x = 19y và x - y = 4
Ta có :
\(\frac{x}{19}=\frac{y}{21}\)và x - y = 4
Áp dụng tính chất của dayc tỉ số bằng nhau là :
\(\frac{x}{19}=\frac{y}{21}=\frac{x-y}{19-21}=\frac{4}{-2}=-2\)
=> x = -38
y = -42
Vậy x = - 38 ; y = - 42
\(\frac{x}{5}=\frac{y}{3}\)và x 2 - y 2 = 4
Đặt \(\frac{x}{5}=\frac{y}{3}=k\)
=> x = 5k , y = 3k
=> x 2 - y 2 = ( 5 k ) 2 - ( 3 k ) 2 = 25k 2 - 9 k 2 = 4
16 k 2 = 4
k 2 = \(\frac{1}{4}\)
=> k = \(\frac{1}{2}\)hoặc x = \(\frac{-1}{2}\)
+ Xét k = \(\frac{1}{2}\)ta có :
=> x = \(\frac{5}{2}\)và y = \(\frac{3}{2}\)
+Xét k = \(\frac{-1}{2}\)
=> x = \(\frac{-5}{2}\), y = \(\frac{-3}{2}\)
Vậy x = \(\frac{5}{2}\)và y = \(\frac{3}{2}\)
hoặc x = \(\frac{-5}{2}\), y = \(\frac{-3}{2}\)
a) \(\frac{2x}{3}=\frac{3y}{4}\Leftrightarrow8x=9y\Rightarrow x=\frac{9y}{8}\left(1\right)\)
\(\frac{3y}{4}=\frac{4z}{5}\Leftrightarrow15y=16z\Rightarrow z=\frac{15y}{16}\left(2\right)\)
THay (1) và (2) vào biểu thức \(x+y+z=41\);ta được : \(\frac{9y}{8}+y+\frac{15y}{16}=41\)
\(\Rightarrow18y+16y+15y=656\Rightarrow y=\frac{656}{49}\)
Do đó : \(x=\frac{\frac{9.656}{49}}{8}=\frac{738}{49}\)
\(z=\frac{\frac{15.656}{49}}{16}=\frac{615}{49}\)
KL : \(x=\frac{738}{49};y=\frac{656}{49};z=\frac{615}{49}\)
b) Ta có : \(4x=3y\Rightarrow x=\frac{3y}{4}\)(1)
\(5y=6z\Rightarrow z=\frac{5y}{6}\)(2)
Thay (1) và (2) vào biểu thức \(x^2+y^2+z^2=500\);ta được :
\(\left(\frac{3y}{4}\right)^2+y^2+\left(\frac{5y}{6}\right)^2=500\)
\(\Rightarrow\frac{9y^2}{16}+y^2+\frac{25y^2}{36}=500\Rightarrow324y^2+576y^2+400y^2=288000\)
\(\Rightarrow1300y^2=288000\Rightarrow y^2=\frac{2880}{13}\Rightarrow\orbr{\begin{cases}y=\frac{24\sqrt{65}}{13}\\y=-\frac{24\sqrt{65}}{13}\end{cases}}\)
Với \(y=\frac{24\sqrt{65}}{13}\Rightarrow x=\frac{3\cdot\frac{24\sqrt{65}}{13}}{4}=\frac{18\sqrt{65}}{13};z=\frac{5\cdot\frac{24\sqrt{65}}{13}}{6}\)
\(y=-\frac{24\sqrt{65}}{13}\Rightarrow x=-\frac{18\sqrt{65}}{13};z=\frac{5\cdot-\frac{24\sqrt{65}}{13}}{6}\)
1. Câu hỏi của letienluc - Toán lớp 6 - Học toán với OnlineMath
BÀi 2:
Cả 4 câu áp dụng tính chất này: \(\sqrt{a^2}=a\)
a)\(\sqrt{\frac{3^2}{7^2}}=\frac{3}{7}\)
b)\(\frac{\sqrt{3^2}+\sqrt{39^2}}{\sqrt{7^2}+\sqrt{92^2}}=\frac{3+39}{7+92}=\frac{42}{99}=\frac{14}{33}\)
c)\(\frac{\sqrt{3^2}-\sqrt{39^2}}{\sqrt{7^2}-\sqrt{91^2}}=\frac{3-39}{7-91}=\frac{-36}{-84}=\frac{3}{7}\)
d)\(\sqrt{\frac{39^2}{91^2}}=\frac{39}{91}=\frac{3}{7}\)
b)Vì BCNN(3;5) = 15
\(\Rightarrow\frac{x}{2}=\frac{y}{3}\Leftrightarrow\frac{x}{2.5}=\frac{y}{3.5}=\frac{x}{10}=\frac{y}{15};\frac{y}{5}=\frac{z}{7}\Leftrightarrow\frac{y}{5.3}=\frac{z}{7.3}=\frac{y}{15}=\frac{z}{21}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{92}{46}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.10=20\\y=2.15=30\\z=2.21=42\end{matrix}\right.\)
Vậy...
c)Vì BCNN(2;3;5) = 30
\(\Rightarrow2x=3y=5z\Leftrightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}=\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
WTFFFFFF>>>
d)dễ... áp dụng tính chất DTBN là ra 1/2 rồi tính
e)Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(x=\frac{y}{2}=\frac{z}{4}=\frac{4x}{4}=\frac{3y}{6}=\frac{2x}{8}=\frac{4x-3y+2x}{4-6+8}=\frac{36}{6}=6\)
\(\Rightarrow\left\{{}\begin{matrix}x=6.1=6\\y=6.2=12\\z=6.4=24\end{matrix}\right.\)
Vậy...
Câu 1:
1)B.\(-3xy\)
2)A.\(\frac{-5}{9}x^2y\) và B.\(\frac{x}{y}\)
3)C.\(\frac{2}{xy}\) và D.\(-5\)
4)C.\(9^2yz\)
Câu 2:
1)C.\(7+2x^2y\)
2)A.\(2+5xy^2\) và D.\(\left(x+2y\right)z\)
3)A.\(5-x\) và D.\(-35.5\)
4)A.\(13.3\) và B.\(\left(5-9x^2\right)y\)
Câu 3:A.Phần hệ số:2,5;phần biến:\(x^2y\)
Câu 4:B.\(-2,5\)
Câu 5:A.\(-\frac{1}{2}x^6y^6\) ,bậc bằng 12
Câu 6:B.Hệ số:-243,bậc bằng 10
Nhớ tick cho mình nha!
nhìn có vẻ không rõ nên các bạn ráng giúp mình nha!!!!
cái này là lớp mấy thế bạn
7 nhé