K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 4 2021

\(\Rightarrow\left\{{}\begin{matrix}x^3+y^3=65\\3x^2y+3xy^2=60\end{matrix}\right.\)

\(\Rightarrow x^3+3x^2y+3xy^2+y^3=125\)

\(\Leftrightarrow\left(x+y\right)^3=125\Leftrightarrow x+y=5\Rightarrow y=5-x\)

Thế vào pt đầu:

\(x^3+\left(5-x\right)^3=65\)

\(\Leftrightarrow x^2-5x+4=0\Rightarrow\left[{}\begin{matrix}x=1;y=4\\y=4;y=1\end{matrix}\right.\)

18 tháng 8 2021

các bn ơi giúp mình với

 

NV
21 tháng 3 2021

Bạn coi lại đề, hệ này ko giải được

Pt bên dưới là \(xy\left(y^2+3y+3\right)=4\) thì giải được

21 tháng 3 2021

à số 3 đó a

7 tháng 11 2021

\(1,\Leftrightarrow\left\{{}\begin{matrix}x=y+5\\2y+10+y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{16}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\\ 2,\Leftrightarrow\left\{{}\begin{matrix}3x=1-2y\\1-2y+y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\\ 3,\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\3y+6+2y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)

7 tháng 11 2021

\(1,\Leftrightarrow\left\{{}\begin{matrix}x=2y+4\\-4y-8+5y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\cdot5+4=14\\y=5\end{matrix}\right.\\ 2,\Leftrightarrow\left\{{}\begin{matrix}5x-30+6x=3\\y=10-2x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\\ 3,\Leftrightarrow\left\{{}\begin{matrix}x=4-2y\\6y-12+y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{10}{7}\\y=\dfrac{19}{7}\end{matrix}\right.\)

21 tháng 5 2021

\(\left\{{}\begin{matrix}xy+3y^2+x=3\left(1\right)\\x^2+xy-2y^2\left(2\right)\end{matrix}\right.\)

\(pt\left(2\right)\Leftrightarrow\left(x^2-y^2\right)+y\left(x-y\right)=0\Leftrightarrow\left(x-y\right)\left(x+2y\right)=0\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-2y\end{matrix}\right.\)

+) Với x=y, thay vào pt (1) ta có: \(4x^2+x-3=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{3}{4}\end{matrix}\right.\)

=> \(x=y=-1;x=y=\dfrac{3}{4}\)

+) Với \(x=-2y\), thay vào pt(1) ta có: \(y^2-2y-3=0\Leftrightarrow\left[{}\begin{matrix}y=-1\Rightarrow x=2\\y=3\Rightarrow x=-6\end{matrix}\right.\)

Vậy hpt có 4 nghiệm: \(\left(x;y\right)\in\left\{\left(-1;-1\right),\left(\dfrac{3}{4};\dfrac{3}{4}\right),\left(2;-1\right),\left(-6;3\right)\right\}\)

29 tháng 4 2023

\(\left\{{}\begin{matrix}2\left(xy+1\right)=x\left(x+y\right)+2\left(1\right)\\3xy-x+3=\sqrt{x+2y+1}+\sqrt{x+4y+4}\left(2\right)\end{matrix}\right.\)

Đk: \(x+2y+1\ge0,x+4y+4\ge0\)

\(\left(1\right)\Rightarrow2xy+2=x^2+xy+2\)

\(\Leftrightarrow x^2-xy=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=y\end{matrix}\right.\) 

*Khi \(x=0\), thay vào (2) ta được pt: \(\sqrt{2y+1}+\sqrt{4y+4}=3\)

Giải bằng phương pháp bình phương 2 vế ta được \(y=0\).

Thay \(x=y=0\) vào đk hoàn toàn thỏa mãn.

*Khi \(x=y\), thay vào (2) ta được pt: \(3x^2-x+3=\sqrt{3x+1}+\sqrt{5x+4}\) .

Mình không giải được nhưng pt có nghiệm \(x=0\) nên suy ra \(y=0\)Vậy hệ pt ban đầu có nghiệm \(\left(x,y\right)=\left(0;0\right)\).

 

NV
12 tháng 1 2021

Biến đổi pt dưới:

\(x^2-4x+4+y\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)^2+y\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2+y\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=2-y\end{matrix}\right.\)

Thay vào pt đầu giải bt

12 tháng 1 2021

thanks bạn nha

27 tháng 5 2022

undefined

27 tháng 5 2022

phương trình(2): x2+xy-2y=4(x-1)

                         ⇔(x2-4x+1)+y(x-2)=0

                         ⇔(x-2)(x+y-2)=0 

giải ra 2 trường hợp thay vào phương trình (1)