Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\hept{\begin{cases}x^2+y^2-xy=1\\x+x^2y=2y^3\end{cases}\Leftrightarrow}\hept{\begin{cases}x^2+y^2=1+xy\\x\left(1+xy\right)=2y^3\end{cases}\Rightarrow x\left(x^2+y^2\right)=2y^3}\)
\(\Leftrightarrow\left(x^3-y^3\right)+\left(xy^2-y^3\right)=0\Leftrightarrow\left(x-y\right)\left(x^2+y^2+xy\right)+y^2\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+2y^2+xy\right)=0\Leftrightarrow\orbr{\begin{cases}x=y\\x^2+2y^2+xy=0\end{cases}}\)
+) \(x=y\Rightarrow\hept{\begin{cases}y^2+y^2-y^2=1\\y+y^3=2y^3\end{cases}\Rightarrow}x=y=\pm1\)
+) \(x^2+2y^2+xy=0\)Vì y=0 không là nghiệm của hệ nên ta chia 2 vế phương trình cho y2:
\(\Rightarrow\left(\frac{x}{y}\right)^2+\frac{x}{y}+2=0\)( Vô nghiệm)
Vậy hệ có nghiệm (1;1),(-1;-1).
2/ \(\hept{\begin{cases}x+y=\sqrt{x+3y}\\x^2+y^2+xy=3\end{cases}\Rightarrow\hept{\begin{cases}x^2+y^2+2xy=x+3y\\x^2+y^2+xy=3\end{cases}}}\Rightarrow xy=x+3y-3\)
\(\Leftrightarrow\left(x-xy\right)+\left(3y-3\right)\Leftrightarrow\left(x-3\right)\left(1-y\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\Rightarrow y\in\varnothing\\y=1\Rightarrow x=1\end{cases}}\)
Vậy hệ có nghiệm (1;1).
\(\hept{\begin{cases}x^2-2y^2=-1\left(1\right)\\2x^3-y^3=2y-x\end{cases}}\)
\(\Rightarrow\left(2x^3-y^2\right)\cdot1=\left(x^2-2y^2\right)\left(2y-x\right)\)(nhân chéo 2 vế để cùng bậc)
\(\Rightarrow2x^3-y^3=2x^2y-x^3-4y^3+2xy^2\)
\(\Rightarrow3x^3-2x^2y-2xy^2+3y^3=0\)
\(\Rightarrow3\left(x+y\right)\left(x^2-xy+y^2\right)-2xy\left(x+y\right)=0\)
\(\Rightarrow\left(x+y\right)\left(3x^2-5xy+3y^2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+y=0\\x=y=0\end{cases}\Rightarrow x=-y}\)
Thay x=-y vào (1): \(x^2-2x^2=-1\Rightarrow x^2=1\Rightarrow\orbr{\begin{cases}x=1\Rightarrow y=-1\\x=-1\Rightarrow y=1\end{cases}}\)
\(a,\hept{\begin{cases}\left(x-y\right)^2=1\\2x^2+2y^2-2xy-y=0\end{cases}}\)
Xét từng TH với x-y=1 và x-y=-1
\(b,\hept{\begin{cases}\left(x-1\right)\left(y+2\right)=0\\xy-3x+2y=0\end{cases}}\)
Xét từng TH x=1 và y=-2
\(\Leftrightarrow\hept{\begin{cases}\left(x-y+1\right)\left(x-2\right)=0\\x^3+2y^2=6\end{cases}}\)
den day ban tu lam tiep nhe
a/
\(\hept{\begin{cases}x^2-3x=2y\\y^2-3y=2x\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2y=x^2-3x\\y^2-3y=2x\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}y=\frac{x^2-3x}{2}\\y^2-3y=2x\left(1\right)\end{cases}}\)
(1) \(\Leftrightarrow\left(\frac{x^2-3x}{2}\right)^2-3\left(\frac{x^2-3x}{2}\right)=2x\)
\(\Leftrightarrow\frac{x^4-6x^3+9x^2}{2}-\frac{3x^2-9x}{2}=2x\)
\(\Leftrightarrow x^4-6x^3+9x^2-3x^2+9x=4x\)
\(\Leftrightarrow x^4-6x^3+6x^2+5x=0\)
\(\Leftrightarrow x\left(x^3-6x^2+6x+5\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\x^3-6x^2+6x+5=0\left(2\right)\end{cases}}\)
Xin làm ý b
\(\hept{\begin{cases}x^2-xy+y=1\\y^2-xy+x=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2-xy=1-y\\y^2-xy=1-x\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\left(1-y\right)=1-y\\y\left(1-x\right)=1-x\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)
Vậy x = y = 1
\(\hept{\begin{cases}3x^2-2y^2-xy+12x-17y-15=0\left(1\right)\\\sqrt{2-x}+\sqrt{6-x-x^2}=y+\sqrt{2y+5}-\sqrt{y+4}\left(2\right)\end{cases}}\)
PT (1) \(\Leftrightarrow3x^2-x\left(y-12\right)-2y^2-17y-15=0\)
\(\Leftrightarrow\Delta=\left(y-12\right)^2+4\cdot3\cdot\left(2y^2+17y+15\right)\)
\(\Leftrightarrow\Delta=y^2-24y+144+24y^2+204y+180\)
\(\Leftrightarrow\Delta=25y^2+180y+324\)
\(\Delta=\left(5y+18\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{y-12+5y+18}{3}=2y+2\\x=\frac{y-12-5y-18}{3}=\frac{-4y}{3}-10\end{cases}}\)
\(x=2y+2\)
\(\Leftrightarrow\sqrt{2-x}+\sqrt{6-x-x^2}=y+\sqrt{2y+5}-\sqrt{y+4}\)
\(\Leftrightarrow\sqrt{-2y}+\sqrt{6-2y-2-4y^2-8y-4}=y+\sqrt{2y+5}-\sqrt{y+4}\)
\(\Leftrightarrow\sqrt{-2y}+\sqrt{-4y^2-10y+0}=y+\sqrt{2y+5}-\sqrt{y+6}\)
\(\Leftrightarrow y=0\Rightarrow x=2\)
Vậy (x;y)=(2;0)
NX: x = y = 0 là 1 nghiệm của hpt
Với x ; y khác 0 thì chia cả 2 vế của hệ đã cho cho xy ta được
\(\hept{\begin{cases}y-\frac{2y}{x}+\frac{3x}{y}=0\\\frac{y}{x}+x+\frac{2}{y}=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y-\frac{2y}{x}=-\frac{3x}{y}\\x+\frac{2}{y}=-\frac{y}{x}\end{cases}}\)
Nhân 2 vế của hệ trên lại ta đc
\(\left(y-\frac{2y}{x}\right)\left(x+\frac{2}{y}\right)=3\)
\(\Leftrightarrow xy-\frac{4}{xy}=3\)
\(\Leftrightarrow\orbr{\begin{cases}xy=4\\xy=-1\end{cases}}\)
Dễ rồi nha