Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\hept{\begin{cases}x^2+y^2-xy=1\\x+x^2y=2y^3\end{cases}\Leftrightarrow}\hept{\begin{cases}x^2+y^2=1+xy\\x\left(1+xy\right)=2y^3\end{cases}\Rightarrow x\left(x^2+y^2\right)=2y^3}\)
\(\Leftrightarrow\left(x^3-y^3\right)+\left(xy^2-y^3\right)=0\Leftrightarrow\left(x-y\right)\left(x^2+y^2+xy\right)+y^2\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+2y^2+xy\right)=0\Leftrightarrow\orbr{\begin{cases}x=y\\x^2+2y^2+xy=0\end{cases}}\)
+) \(x=y\Rightarrow\hept{\begin{cases}y^2+y^2-y^2=1\\y+y^3=2y^3\end{cases}\Rightarrow}x=y=\pm1\)
+) \(x^2+2y^2+xy=0\)Vì y=0 không là nghiệm của hệ nên ta chia 2 vế phương trình cho y2:
\(\Rightarrow\left(\frac{x}{y}\right)^2+\frac{x}{y}+2=0\)( Vô nghiệm)
Vậy hệ có nghiệm (1;1),(-1;-1).
2/ \(\hept{\begin{cases}x+y=\sqrt{x+3y}\\x^2+y^2+xy=3\end{cases}\Rightarrow\hept{\begin{cases}x^2+y^2+2xy=x+3y\\x^2+y^2+xy=3\end{cases}}}\Rightarrow xy=x+3y-3\)
\(\Leftrightarrow\left(x-xy\right)+\left(3y-3\right)\Leftrightarrow\left(x-3\right)\left(1-y\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\Rightarrow y\in\varnothing\\y=1\Rightarrow x=1\end{cases}}\)
Vậy hệ có nghiệm (1;1).
a) \(\hept{\begin{cases}x+y=2\\3x+3y=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3x+3y=6\\3x+3y=2\end{cases}}\)
Dễ thấy điều trên là vô lí nên hệ phương trình không có nghiệm
\(\hept{\begin{cases}x^2+y^2=1\left(1\right)\\x^2-x=4y^2-2y\left(2\right)\end{cases}}\)
Xét pt (2) <=> x2 - 4y2 - (x - 2y) = 0
<=> (x - 2y)(x + 2y) - (x - 2y) = 0
<=> (x - 2y)(x + 2y - 1) = 0
<=> \(\orbr{\begin{cases}x=2y\\x+2y-1=0\end{cases}}\)
Với x = 2y thay vào pt (1) => (2y)2 + y2 = 1
<=> 5y2 = 1 <=> y = \(\pm\frac{1}{\sqrt{5}}\) => x = \(\pm\frac{2}{\sqrt{5}}\)
Với x + 2y - 1 = 0 => x = 1 - 2y thay vào pt (1) => (1 - 2y)2 + y2 = 1
<=> 5y2 - 4y + 1 = 1
<=> y(5y - 4) = 0
<=> \(\orbr{\begin{cases}y=0\\y=\frac{4}{5}\end{cases}}\) y = 0 => x = 1; y = 4/5 => x = -3/5
Vậy ....