K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2022

Đặt \(\hept{\begin{cases}\frac{2}{x+1}=a\\\frac{1}{y}=b\end{cases}}\)

Ta có: \(\hept{\begin{cases}a+3b=-1\\a+5b=-1\end{cases}}\)

Giải hpt ta được \(\hept{\begin{cases}a=-1\\b=0\end{cases}}\)

Hay: \(\hept{\begin{cases}\frac{2}{x+1}=-1\\\frac{1}{y}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-3\\y=0\end{cases}}\)

Vậy: ...

23 tháng 1 2022

ĐẶT \(\hept{\begin{cases}\frac{2}{X+1}=a\\\frac{1}{Y}=b\end{cases}}\)

\(TC\hept{\begin{cases}a+3b=-1\\a+5b=-1\end{cases}}\)

GIẢI HỆ PHƯƠNG TRÌNH TA ĐƯỢC: \(\hept{\begin{cases}a=-1\\b=0\end{cases}}\)

HAY \(\hept{\begin{cases}\frac{2}{X+1}=-1\\\frac{1}{Y}=0\end{cases}\Rightarrow\hept{\begin{cases}X=-3\\Y=0\end{cases}}}\)

HT NHÉ BẠN

15 tháng 11 2018

a/ Đảo ngược lại rồi đặc \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\)

15 tháng 11 2018

b/ Dễ thấy vai trò x, y, z như nhau nên ta chỉ cần xét 1 trường hợp tiêu biểu thôi.

Xét \(x>y>z\)

\(\Rightarrow\frac{1}{x}< \frac{1}{y}< \frac{1}{z}\)

\(\Rightarrow x+\frac{1}{y}>z+\frac{1}{x}\)(trái giả thuyết)

\(\Rightarrow x=y=z\)'

\(\Rightarrow x+\frac{1}{x}=2\)

\(\Leftrightarrow x=1\)

8 tháng 7 2017

a) \(\hept{\begin{cases}\left(x-y\right)^2=\left(5-2xy\right)^2\\\left(x+y\right)^2-2xy+xy=7\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2-4xy=25+4x^2y^2-20xy\\\left(x+y\right)^2-xy=7\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2=25+4x^2y^2-16xy\\\left(x+y\right)^2=7+xy\end{cases}}\)

\(\Rightarrow25+4x^2y^2-16xy=7+xy\)

\(\Leftrightarrow4x^2y^2-17xy+18=0\)

\(\Leftrightarrow xy=\frac{9}{4}\)  hoặc  \(xy=2\)

Từ đó tính đc x+y dễ dàng tìm được các giá trị x và y

b) Câu hỏi của Huỳnh Minh Nghĩa - Toán lớp 9 - Học toán với OnlineMath

21 tháng 1 2017

Đặt ẩn phụ rồi !

Phân tích như này cho b hiểu:

\(\Leftrightarrow\hept{\begin{cases}3.\frac{1}{x}+5.\frac{1}{y}=\frac{3}{2}\\5.\frac{1}{x}-2.\frac{1}{y}=\frac{1}{3}\end{cases}}\)

Đặt: a = 1/x , b = 1/y

\(\Leftrightarrow\hept{\begin{cases}3a+5b=\frac{3}{2}\\5a-2b=\frac{1}{3}\end{cases}}\)(nhân 2 cho cái trên, 5 cho cái dưới)

\(\Leftrightarrow\hept{\begin{cases}6a+10b=3\\25a-10b=\frac{5}{3}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}31a=\frac{14}{3}\\6a+10b=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=\frac{14}{93}\\6.\frac{14}{93}+10b=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=\frac{14}{93}\\b=\frac{13}{62}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x}=\frac{14}{93}\\\frac{1}{y}=\frac{13}{62}\end{cases}}\)(nhân chéo chia ngang)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{93}{14}\\y=\frac{62}{13}\end{cases}}\)

Kết luận..

21 tháng 1 2017

Đặt : \(\frac{1}{x}=a;\frac{1}{y}=b\)

Hệ phương trình trở thành :

\(\hept{\begin{cases}3a+5b=\frac{3}{2}\\5a-2b=\frac{1}{3}\end{cases}\Leftrightarrow\hept{\begin{cases}15a+25b=\frac{15}{2}\\15a-6b=1\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}31b=\frac{13}{2}\\15a-6b=1\end{cases}\Leftrightarrow\hept{\begin{cases}b=\frac{13}{62}\\15a-6.\frac{13}{62}=1\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}b=\frac{13}{62}\\15a-\frac{39}{31}=1\end{cases}\Leftrightarrow\hept{\begin{cases}b=\frac{13}{62}\\a=\frac{14}{93}\end{cases}}}\)

Với \(a=\frac{14}{93}\Rightarrow\frac{1}{x}=\frac{14}{63}\Rightarrow x=\frac{9}{2}\)

Với \(b=\frac{13}{62}\Rightarrow\frac{1}{y}=\frac{13}{62}\Rightarrow y=\frac{62}{13}\)

12 tháng 8 2018

a. \(=>\hept{\begin{cases}3xy=\frac{y^2+2}{x}\\3xy=\frac{x^2+2}{y}\end{cases}=>\frac{y^2+2}{x}=\frac{x^2+2}{y}}\\ \)

=> \(y^3+2y=x^3+2x=>x^3-y^3+2x-2y=0\\ \)

=>\(\left(x-y\right)\left(x^2+y^2+xy+2\right)=0\\ \)

\(x^2+y^2+xy\ge0=>x^2+y^2+xy+2>0\)

=> x-y=0=> x=y

26 tháng 2 2019

thô ng báo : ai giải được cho tôi bài hệ phương trình này thì tôi k 3 cái cho người đó trong 3 ngày ok , giử lời hứa ...

26 tháng 2 2019

ĐKXĐ;: x khác -y ; y khác 1

Đặt \(\hept{\begin{cases}\frac{1}{x+y}=a\\\frac{1}{y-1}=b\end{cases}}\left(a;b\ne0\right)\)

Ta thu được hệ \(\hept{\begin{cases}4a+b=5\\a-2b=-1\end{cases}}\)

Giải hệ này dễ quá rồi -_-