Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x^2-2x\right)-\left(y^2-4y\right)=1\\\left(x^2-2x\right)^2+2=y\left(x-2\right)x\left(y-4\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x^2-2x\right)-\left(y^2-4y\right)=1\\\left(x^2-2x\right)^2+2=\left(x^2-2x\right)\left(y^2-4y\right)\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x^2-2x=u\\y^2-4y=v\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2u-v=1\\u^2+2=uv\end{matrix}\right.\) \(\Rightarrow u^2+2=u\left(2u-1\right)\)
\(\Leftrightarrow u^2-u-2=0\Leftrightarrow...\)
ĐKXĐ : \(x;y\ne0\)
Ta có \(\dfrac{y}{x}-\dfrac{2x}{y}=\dfrac{-5}{2}-\dfrac{2}{xy}\)
\(\Leftrightarrow\dfrac{y^2-2x^2}{xy}=\dfrac{-5xy-4}{2xy}\)
\(\Leftrightarrow2y^2-4x^2+5xy=-4\) (1)
Kết hợp \(x^2+xy-y^2=5\) (2)
ta có : \(-5.\left(2y^2-4x^2+5xy\right)=4\left(x^2+xy-y^2\right)\)
\(\Leftrightarrow16x^2-29xy-6y^2=0\)
\(\Leftrightarrow16x^2-32xy+3xy-6y^2=0\)
\(\Leftrightarrow\left(x-2y\right)\left(16x+3y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2y\\x=-\dfrac{3y}{16}\end{matrix}\right.\)
Thay \(x=-\dfrac{3y}{16}\) vào (2) ta được
\(\dfrac{9y^2}{256}-\dfrac{3y^2}{16}-y^2=5\)
\(\Leftrightarrow y^2=-\dfrac{256}{59}\Leftrightarrow y\in\varnothing\) (loại)
Khi x = 2y thay vào (2) ta được
4y2 + 2y2 - y2 = 5
\(\Leftrightarrow y=\pm1\) (tm)
Với y = 1 => x = 2
y = -1 => x = -2
Vậy (x;y) = (2;1) ; (-2;-1)
Trừ vế cho vế phương trình (1) cho (2) ta được:
x 2 + y 2 − y = − 1 ⇔ x 2 + y 2 − y + 1 = 0
Ta có:
x 2 ≥ 0 , ∀ x y 2 − y + 1 = y − 1 2 2 + 3 4 > 0 , ∀ y ⇒ x 2 + y 2 − y + 1 > 0 , ∀ x , y
Do đó phương trình x 2 + y 2 − y + 1 = 0 vô nghiệm
Vậy không tồn tại giá trị của xy
Đáp án cần chọn là: D
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+x+y^2+y=8\\\left(x^2+x\right)\left(y^2+y\right)=12\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x^2+x=u\\y^2+y=v\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u+v=8\\uv=12\end{matrix}\right.\) \(\Rightarrow\left(u;v\right)=\left(6;2\right);\left(2;6\right)\)
TH1: \(\left\{{}\begin{matrix}x^2+x=6\\y^2+y=2\end{matrix}\right.\) \(\Rightarrow...\)
TH2: ... tương tự