Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}x^3+2y^2-4y+3=0\\x^2+x^2y^2-2y=0\end{cases}}\)
\(x^3+2y^2-4y+3=0\Leftrightarrow x^2+2\left(y^2-2+1\right)+1=0\Leftrightarrow\left(y-1\right)^2=\frac{-1-x^3}{2}\)
\(\Rightarrow\frac{-1-x^3}{2}\ge0\Leftrightarrow x\ge-1\)
Để có nghiệm thì \(\Delta_y=4-4x^4\ge0\Leftrightarrow-1\le x\le1\)
Kết hợp với trên, ta có: x = -1, thế vào PT ban đầu, tính được y = 1
Vậy hệ của nghiệm là: \(\left(x,y\right)=\left(-1;1\right)\)
Trong OLM,số người học lớp 9 chơi phần mềm này rất ít!!Anh có thể vào Học24h để hỏi,ở đó còn có rất nhiều thầy cô giáo sẽ giúp anh!!
\(\hept{\begin{cases}\sqrt[3]{2y+24}+\sqrt{12-x}=6\left(1\right)\\x^3+2xy^2+X-2yx^2-4y^3-2y=0\left(2\right)\end{cases}}\)
\(\left(1\right)\)ĐK:\(x\le12\)
Đặt \(u=\sqrt[3]{2y+24}\)\(\Rightarrow u^3=2y+24\)
\(v=\sqrt{12-x}\) \(\Rightarrow v^2=12-x\)
Ta có hệ phương trình :\(\hept{\begin{cases}u+v=6\\u^3+v^2=2y-x+36\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}v=6-u\\u^3+\left(6-u\right)^2=2y-x+36\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}v=6-u\\u^3+u^2+36-12u=2y+x+36\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}v=6-u\\u^3+u^2-12u=2y+x\end{cases}}\)
Giải hệ phương trình: \(\hept{\begin{cases}x^2-4y^2-4x+4y+3=0\\x^2+2y^2-2xy+4x-4y-1=0\end{cases}.}\)
Phương trình trên <=> \(\left(x^2-4x+4\right)-\left(4y^2-4y+1\right)=0\Leftrightarrow\left(x-2\right)^2-\left(2y-1\right)^2=0\)
\(\Leftrightarrow\left(x-2-2y+1\right)\left(x-2+2y-1\right)=0\)
Em làm tiếp nhé!
\(a,\Leftrightarrow\left\{{}\begin{matrix}5x+15y=-10\\5x-4y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}19y=-21\\5x-4y=11\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{21}{19}\\5x-4\left(-\dfrac{21}{19}\right)=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{25}{19}\\y=-\dfrac{21}{19}\end{matrix}\right.\)
\(c,\Leftrightarrow\left\{{}\begin{matrix}3x+5y=1\\10x-5y=-40\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+5y=1\\13x=-39\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=2\end{matrix}\right.\\ d,\Leftrightarrow\left\{{}\begin{matrix}5x-10y=-30\\5x-3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x-3y=5\\-7y=-35\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=5\end{matrix}\right.\\ e,\Leftrightarrow\left\{{}\begin{matrix}2\left(x+y\right)+3\left(x-y\right)=4\\2\left(x+y\right)+4\left(x-y\right)=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y=6\\2\left(x+y\right)+3\cdot6=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x-y=6\\x+y=-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=-\dfrac{13}{2}\end{matrix}\right.\)
x^3+2y^2-4y+3=0
=>x^3=-1-2(y-1)^2<=-1
=>x<=-1
x^2+x^2y^2-2y=0
=>x^2=2y/1+y^2<=1
=>-1<=x<=1
=>x=-1
=>y=1