Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Biến đổi pt dưới:
\(x^2-4x+4+y\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)^2+y\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2+y\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=2-y\end{matrix}\right.\)
Thay vào pt đầu giải bt
NX: x = y = 0 là 1 nghiệm của hpt
Với x ; y khác 0 thì chia cả 2 vế của hệ đã cho cho xy ta được
\(\hept{\begin{cases}y-\frac{2y}{x}+\frac{3x}{y}=0\\\frac{y}{x}+x+\frac{2}{y}=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y-\frac{2y}{x}=-\frac{3x}{y}\\x+\frac{2}{y}=-\frac{y}{x}\end{cases}}\)
Nhân 2 vế của hệ trên lại ta đc
\(\left(y-\frac{2y}{x}\right)\left(x+\frac{2}{y}\right)=3\)
\(\Leftrightarrow xy-\frac{4}{xy}=3\)
\(\Leftrightarrow\orbr{\begin{cases}xy=4\\xy=-1\end{cases}}\)
Dễ rồi nha
1 x − x y = x 2 + x y − 2 y 2 ( 1 ) x + 3 − y 1 + x 2 + 3 x = 3 ( 2 )
Điều kiện: x > 0 y > 0 x + 3 ≥ 0 x 2 + 3 x ≥ 0 ⇔ x > 0 y > 0
( 1 ) ⇔ y − x y x = ( x − y ) ( x + 2 y ) ⇔ ( x − y ) x + 2 y + 1 y x = 0 ⇔ x = y do x + 2 y + 1 y x > 0 , ∀ x , y > 0
Thay y = x vào phương trình (2) ta được:
( x + 3 − x ) ( 1 + x 2 + 3 x ) = 3 ⇔ 1 + x 2 + 3 x = 3 x + 3 − x ⇔ 1 + x 2 + 3 x = x + 3 + x ⇔ x + 3 . x − x + 3 − x + 1 = 0 ⇔ ( x + 1 − 1 ) ( x − 1 ) = 0 ⇔ x + 3 = 1 x = 1 ⇔ x = − 2 ( L ) x = 1 ( t m ) ⇒ x = y = 1
Vậy hệ có nghiệm duy nhất (1;1)