Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: ....
PT (1)\(\Leftrightarrow\left(x-y\right)\left(x^2+y^2+x+y+2\right)=0\)
Dễ thấy cái ngoặc to >0. Do đó x = y.
Thay vào PT (2) \(\Leftrightarrow\sqrt{5-x}+\sqrt{x}+\sqrt{3x-1}=x^2+3x+1\)
Đến đây chắc là có đk: \(\frac{1}{3}\le x\le5\). Nghiệm xấu, anh tự giải nốt:D
phân tích pt1 thành (x+2)(x2+y2-1)=0
\(\Rightarrow\)x= -2 hoặc y2=1-x2
Nếu x=-2 thay vào pt2
Nếu y2=1-x2.Thay vào pt2 để đưa về biến x
Nhân liên hợp 2 vế vs \(\sqrt{2-x^2}-1\)
\(\left\{{}\begin{matrix}2\left(xy+1\right)=x\left(x+y\right)+2\left(1\right)\\3xy-x+3=\sqrt{x+2y+1}+\sqrt{x+4y+4}\left(2\right)\end{matrix}\right.\)
Đk: \(x+2y+1\ge0,x+4y+4\ge0\)
\(\left(1\right)\Rightarrow2xy+2=x^2+xy+2\)
\(\Leftrightarrow x^2-xy=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=y\end{matrix}\right.\)
*Khi \(x=0\), thay vào (2) ta được pt: \(\sqrt{2y+1}+\sqrt{4y+4}=3\)
Giải bằng phương pháp bình phương 2 vế ta được \(y=0\).
Thay \(x=y=0\) vào đk hoàn toàn thỏa mãn.
*Khi \(x=y\), thay vào (2) ta được pt: \(3x^2-x+3=\sqrt{3x+1}+\sqrt{5x+4}\) .
Mình không giải được nhưng pt có nghiệm \(x=0\) nên suy ra \(y=0\)Vậy hệ pt ban đầu có nghiệm \(\left(x,y\right)=\left(0;0\right)\).
\(\hept{\begin{cases}x^2+xy+x-y-2y^2=0\\x^2-y^2+x+y=6\end{cases}}\)
\(hpt\Leftrightarrow\hept{\begin{cases}\left(x-y\right)\left(x+2y+1\right)=0\left(1\right)\\\left(x+y\right)\left(x-y+1\right)=6\left(2\right)\end{cases}}\)
\(\left(1\right)\Leftrightarrow\orbr{\begin{cases}x-y=0\\x+2y+1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=y\\x=-1-2y\end{cases}}\)
- Xét \(x=y\) thay vào \(\left(2\right)\) ta có:
\(\left(2\right)\Leftrightarrow2y=6\Leftrightarrow y=3\Leftrightarrow x=y=3\)
- Xét \(x=-1-2y\) thay vào \(\left(2\right)\) ta có:
\(\left(2\right)\Leftrightarrow3y^2+3y=6\Leftrightarrow3y^2+3y-6=0\)
\(\Leftrightarrow3\left(y-1\right)\left(y+2\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}y=1\\y=-2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}y=1\Rightarrow x=-1-2y=-3\\y=-2\Rightarrow x=-1-2y=3\end{cases}}\)
Vậy hpt có nghiệm là \(\left(x;y\right)=\left(3;3\right);\left(-3;1\right);\left(3;-2\right)\)
1) \(\hept{\begin{cases}x^2+y^2-xy=1\\x+x^2y=2y^3\end{cases}\Leftrightarrow}\hept{\begin{cases}x^2+y^2=1+xy\\x\left(1+xy\right)=2y^3\end{cases}\Rightarrow x\left(x^2+y^2\right)=2y^3}\)
\(\Leftrightarrow\left(x^3-y^3\right)+\left(xy^2-y^3\right)=0\Leftrightarrow\left(x-y\right)\left(x^2+y^2+xy\right)+y^2\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+2y^2+xy\right)=0\Leftrightarrow\orbr{\begin{cases}x=y\\x^2+2y^2+xy=0\end{cases}}\)
+) \(x=y\Rightarrow\hept{\begin{cases}y^2+y^2-y^2=1\\y+y^3=2y^3\end{cases}\Rightarrow}x=y=\pm1\)
+) \(x^2+2y^2+xy=0\)Vì y=0 không là nghiệm của hệ nên ta chia 2 vế phương trình cho y2:
\(\Rightarrow\left(\frac{x}{y}\right)^2+\frac{x}{y}+2=0\)( Vô nghiệm)
Vậy hệ có nghiệm (1;1),(-1;-1).
2/ \(\hept{\begin{cases}x+y=\sqrt{x+3y}\\x^2+y^2+xy=3\end{cases}\Rightarrow\hept{\begin{cases}x^2+y^2+2xy=x+3y\\x^2+y^2+xy=3\end{cases}}}\Rightarrow xy=x+3y-3\)
\(\Leftrightarrow\left(x-xy\right)+\left(3y-3\right)\Leftrightarrow\left(x-3\right)\left(1-y\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\Rightarrow y\in\varnothing\\y=1\Rightarrow x=1\end{cases}}\)
Vậy hệ có nghiệm (1;1).
đkxđ: \(\left\{{}\begin{matrix}x\ne0\\y\ne0\end{matrix}\right.\)
pt đầu \(\Leftrightarrow x+\dfrac{2}{x}+y+\dfrac{1}{y}=6\) (3)
pt thứ 2 \(\Leftrightarrow x^2+\dfrac{4}{x^2}+y^2+\dfrac{1}{y^2}=14\) \(\Leftrightarrow\left(x^2+2.x.\dfrac{2}{x}+\dfrac{4}{x^2}\right)+\left(y^2+2y.\dfrac{1}{y}+\dfrac{1}{y^2}\right)=20\)
\(\Leftrightarrow\left(x+\dfrac{2}{x}\right)^2+\left(y+\dfrac{1}{y}\right)^2=20\) (4)
Đặt \(\left\{{}\begin{matrix}x+\dfrac{2}{x}=u\left(\left|u\right|\ge2\sqrt{2}\right)\\y+\dfrac{1}{y}=v\left(\left|v\right|\ge2\right)\end{matrix}\right.\) thì từ (3) và (4) suy ra \(\left\{{}\begin{matrix}u+v=6\\u^2+v^2=20\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}v=6-u\\u^2+\left(6-u\right)^2=20\end{matrix}\right.\)
\(u^2+\left(6-u\right)^2=20\) \(\Leftrightarrow u^2+36-12u+u^2=20\) \(\Leftrightarrow2u^2-12u+16=0\) \(\Leftrightarrow u^2-6u+8=0\) \(\Leftrightarrow\left(u-2\right)\left(u-4\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}u=2\left(loại\right)\\u=4\left(nhận\right)\end{matrix}\right.\).
\(\Rightarrow v=6-u=2\), suy ra \(\left\{{}\begin{matrix}x+\dfrac{2}{x}=4\\y+\dfrac{1}{y}=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\pm\sqrt{2}\\y=1\end{matrix}\right.\) (nhận).
Vậy hpt đã cho có các nghiệm \(\left(x;y\right)\in\left\{\left(2-\sqrt{2};1\right);\left(2+\sqrt{2};1\right)\right\}\)