Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}x-y=10\\\dfrac{-120\left(x-y\right)}{xy}=\dfrac{2}{5}\end{matrix}\right.\) \(\Rightarrow\dfrac{-1200}{xy}=\dfrac{2}{5}\Rightarrow xy=-3000\)
Ta được hệ: \(\left\{{}\begin{matrix}x-y=10\\xy=-3000\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=y+10\\xy=-3000\end{matrix}\right.\)
Thay pt trên vào dưới:
\(\left(y+10\right).y=-3000\Rightarrow y^2+10y+3000=0\)
\(\Rightarrow\) pt vô nghiệm
Vậy hệ đã cho vô nghiệm
\(\left\{{}\begin{matrix}\dfrac{120}{x}=\dfrac{80}{y}\\\dfrac{104}{y}-1=\dfrac{96}{x}\end{matrix}\right.\)(1)
Đặt \(a=\dfrac{1}{x}\);\(b=\dfrac{1}{y}\)
Vậy (1)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}120a=80b\\104b-1=96a\left(2\right)\end{matrix}\right.\)
Ta có \(120a=80b\Leftrightarrow b=\dfrac{3}{2}a\)
Thay \(b=\dfrac{3}{2}a\) vào (2)\(\Leftrightarrow104.\dfrac{3}{2}a-1=96a\Leftrightarrow156a-1=96a\Leftrightarrow60a=1\Leftrightarrow a=\dfrac{1}{60}\)
Vậy \(b=\dfrac{3}{2}.a=\dfrac{3}{2}.\dfrac{1}{60}=\dfrac{1}{40}\)
Vậy \(\left\{{}\begin{matrix}a=\dfrac{1}{60}\\b=\dfrac{1}{40}\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=60\\y=40\end{matrix}\right.\)
Vậy (x;y)=(60;40)
\(\left\{{}\begin{matrix}\dfrac{3}{x}=\dfrac{2}{y}\\\dfrac{104}{y}-1=\dfrac{96}{x}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{96}{x}=\dfrac{64}{y}\\\dfrac{104}{y}-1=\dfrac{96}{x}\end{matrix}\right.\) \(\Rightarrow\dfrac{104}{y}-1=\dfrac{64}{y}\)
\(\Rightarrow\dfrac{40}{y}=1\Rightarrow y=40\)
\(\Rightarrow x=\dfrac{3y}{2}=60\)
Vậy nghiệm của hệ là \(\left(x;y\right)=\left(60;40\right)\)
a) ĐK xác định : x≠0;y≠0
ta có : \(\left\{{}\begin{matrix}\dfrac{5}{x}+\dfrac{6}{y}=9\\\dfrac{2}{x}-\dfrac{6}{y}=7\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\dfrac{7}{x}=16\\\dfrac{2}{x}-\dfrac{6}{y}=7\end{matrix}\right.< =>\left\{{}\begin{matrix}x=\dfrac{7}{16}\\y=-\dfrac{42}{17}\end{matrix}\right.\)
Vậy S = {(\(\dfrac{7}{16};-\dfrac{42}{17}\))}
b) Đk xác định : x≠0;y≠0
ta có : \(\left\{{}\begin{matrix}\dfrac{5}{x}+\dfrac{1}{y}=14\\\dfrac{8}{x}-\dfrac{1}{y}=-8\end{matrix}\right.< =>\left\{{}\begin{matrix}\dfrac{13}{x}=6\\\dfrac{5}{x}+\dfrac{1}{y}=14\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=\dfrac{13}{6}\\y=\dfrac{13}{152}\end{matrix}\right.\)
Vậy S={(\(\dfrac{13}{6};\dfrac{13}{152}\))}
c) ĐK xác định : x≠0;y≠0
ta có : \(\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{7}{y}=21\\-\dfrac{2}{x}-\dfrac{5}{y}=-11\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\dfrac{2}{y}=10\\\dfrac{2}{x}+\dfrac{7}{y}=21\end{matrix}\right.< =>\left\{{}\begin{matrix}y=\dfrac{1}{5}\\x=-\dfrac{1}{7}\end{matrix}\right.\)
Vậy S={(\(-\dfrac{1}{7};\dfrac{1}{5}\))}
d) ĐK xác định : x≠0;y≠0
ta có : \(\left\{{}\begin{matrix}\dfrac{9}{x}+\dfrac{2}{y}=22\\\dfrac{5}{x}-\dfrac{2}{y}=13\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\dfrac{14}{x}=35\\\dfrac{5}{x}-\dfrac{2}{y}=13\end{matrix}\right.< =>\left\{{}\begin{matrix}x=\dfrac{2}{5}\\y=-4\end{matrix}\right.\)
Vậy S={(0,4;-4)}
e) ĐKXĐ : x≠0;y≠0
ta có : \(\left\{{}\begin{matrix}\dfrac{3}{x}+\dfrac{5}{y}=10\\-\dfrac{3}{x}-\dfrac{7}{y}=8\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}-\dfrac{2}{y}=18\\\dfrac{3}{x}+\dfrac{5}{y}=10\end{matrix}\right.< =>\left\{{}\begin{matrix}y=-\dfrac{1}{9}\\x=\dfrac{3}{55}\end{matrix}\right.\) 'Vậy....
Giải hệ sau :
Câu a :
\(\left\{{}\begin{matrix}x+y=-1\\2x+y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\-x=-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\x=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=-3\\x=2\end{matrix}\right.\)
Vậy ...........................
Câu b :
Đặt \(\left\{{}\begin{matrix}\dfrac{1}{x}=a\\\dfrac{1}{y}=b\end{matrix}\right.\) . Ta có :
\(\left\{{}\begin{matrix}a+b=\dfrac{1}{5}\\3a+4b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a+3b=\dfrac{3}{5}\\3a+4b=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-b=-\dfrac{7}{5}\\3a+4b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{7}{5}\\a=-\dfrac{6}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{7}{5}\\\dfrac{1}{y}=-\dfrac{6}{5}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{7}\\y=-\dfrac{5}{6}\end{matrix}\right.\)
Vậy..................
\(a,\left\{{}\begin{matrix}2x-y=4\\x+5y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-y=4\\2x+10y=6\end{matrix}\right.\left\{{}\begin{matrix}11y=2\\2x+10y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2}{11}\\2x+10.\dfrac{2}{11}=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2}{11}\\2x=\dfrac{46}{11}\end{matrix}\right.\left\{{}\begin{matrix}y=\dfrac{2}{11}\\x=\dfrac{23}{11}\end{matrix}\right.\)
ĐK: \(x.y\ne0\)
\(\dfrac{9y}{4x}=\dfrac{4x}{y}\Leftrightarrow9y^2=16x^2\Leftrightarrow\left[{}\begin{matrix}4x=3y\\4x=-3y\end{matrix}\right.\)
TH1: \(4x=3y\) thay vào pt đầu:
\(3y+\dfrac{9y}{4}=120\Leftrightarrow\dfrac{21y}{4}=120\Rightarrow\left\{{}\begin{matrix}y=\dfrac{160}{7}\\x=\dfrac{120}{7}\end{matrix}\right.\)
TH2: \(4x=-3y\) thay vào pt đầu:
\(-3y+\dfrac{9y}{4}=120\Leftrightarrow\dfrac{-3y}{4}=120\Rightarrow\left\{{}\begin{matrix}y=-160\\x=120\end{matrix}\right.\)
hỏi trước tí, bạn biết giải cái hệ này chứ?
\(\left\{{}\begin{matrix}2x+y=3\\2x-3y=1\end{matrix}\right.\)
Tất cả các hpt này đều giải bằng PP đặt ẩn phụ
a) \(\begin{cases}2\left(x+y\right)+3\left(x-y\right)=4\\\left(x+y\right)+2\left(x-y\right)=5\end{cases}\)
Đặt \(x+y=a\) ; \(x-y=b\) ta được:
\(\begin{cases}2a+3b=4\\a+2b=5\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}2a+3b=4\\2a+4b=10\end{cases}\)\(\Leftrightarrow\) \(\begin{cases}-b=-6\\2a+4b=10\end{cases}\)
\(\Leftrightarrow\) \(\begin{cases}b=6\\2a+4.6=10\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}a=-7\\b=6\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}x+y=6-7\\x-y=6-7\end{cases}\)
\(\Leftrightarrow\) \(\begin{cases}x-7=-1\\6-y=-1\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}x=6\\y=-7\end{cases}\)
Lúc khác mình làm tiếp mấy câu kia
Tiếp nào!
b) \(\begin{cases}\dfrac{3}{x}-\dfrac{4}{y}=2\\\dfrac{4}{x}-\dfrac{5}{y}=3\end{cases}\) Đặt \(\dfrac{1}{x}=a\) ; \(\dfrac{1}{y}=b\) ta được:
\(\begin{cases}3a-4b=2\\4a-5b=3\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}12a-16b=8\\12a-15b=9\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}-1b=-1\\12a-15b=9\end{cases}\)
\(\Leftrightarrow\) \(\begin{cases}b=1\\a=2\end{cases}\)\(\Leftrightarrow\) \(\begin{cases}a=2\\b=1\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}\dfrac{1}{a}=2\\\dfrac{1}{b}=1\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}a=\dfrac{1}{2}\\b=1\end{cases}\)
c) Làm tương tự thay \(\dfrac{1}{2x-y}=a\) ; \(\dfrac{1}{x+y}=b\)
\(\left\{{}\begin{matrix}X+44=Y\\\dfrac{120}{X}+\dfrac{11}{30}=\dfrac{120}{Y}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}X=Y-44\\3600Y+11XY=3600X\end{matrix}\right.\)
\(3600Y+11\left(Y-44\right)Y=3600\left(Y-44\right)\\ =11Y^2-484Y+158400 =0\)
\(\Delta'=\left(-242\right)^2-158400.11=-1683836\)
=> DO \(\Delta'>0\) nên pt vô nghiệm