Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1: ĐK: x khác -1/2, y khác -2
Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=t\) Từ phương trình thứ nhất ta có:
\(t+\frac{1}{t}=2\Leftrightarrow t^2-2t+1=0\Leftrightarrow t=1\)
=> \(\sqrt[3]{\frac{2x+1}{y+2}}=1\Leftrightarrow2x+1=y+2\Leftrightarrow2x-y=1\)
Vậy nên ta có hệ phương trình cơ bản: \(\hept{\begin{cases}2x-y=1\\4x+3y=7\end{cases}}\)Em làm tiếp nhé>
\(1,ĐKXĐ:\hept{\begin{cases}y\ne-2\\x\ne-\frac{1}{2}\end{cases}}\)
Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=a\left(a\ne0\right)\)
\(Pt\left(1\right)\Leftrightarrow a+\frac{1}{a}=2\)
\(\Leftrightarrow a^2+1=2a\)
\(\Leftrightarrow\left(a-1\right)^2=0\)
\(\Leftrightarrow a=1\)
\(\Leftrightarrow\sqrt[3]{\frac{2x+1}{y+2}}=1\)
Những bài còn lại chỉ cần phân tích ra rồi rút gọn là được nha. Bạn tự làm nha!
Đặt \(\hept{\begin{cases}x+y=a\\x-y=b\end{cases}}\)\(\Rightarrow\)ta có hệ \(\hept{\begin{cases}2a+3b=4\\a+2b=5\end{cases}}\Rightarrow\hept{\begin{cases}a=-7\\b=6\end{cases}}\)Từ đó ta có \(\hept{\begin{cases}x+y=-7\\x-y=6\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=-\frac{13}{2}\end{cases}}\)PS: Cái đề chỗ 3(x+y) phải thành 3(x-y) chứ
a) \(\hept{\begin{cases}\sqrt{2x}-\sqrt{3y}=1\left(1\right)\\x+\sqrt{3y}=\sqrt{2}\left(2\right)\end{cases}}\) ( ĐK \(x,y\ge0\) )
Từ (1) và (2)\(\Leftrightarrow\sqrt{2x}+x=1+\sqrt{2}\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}+\sqrt{2}+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-1=0\\\sqrt{x}+\sqrt{2}+1=0\end{cases}}\)
\(\Leftrightarrow x=1\) ( Do \(x\ge0\) )
Thay \(x=1\) vào hệ (1) ta có :
\(\sqrt{2}-\sqrt{3y}=1\)
\(\Leftrightarrow\sqrt{3y}=\sqrt{2}-1\)
\(\Leftrightarrow y=\frac{3-2\sqrt{2}}{3}\) ( thỏa mãn )
P/s : E chưa học cái này nên không chắc lắm ...
\(b,\hept{\begin{cases}\left(\sqrt{2}-1\right)x-y=\sqrt{2}\\\left(\sqrt{2}-1\right)x+\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)y=\sqrt{2}-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{2}-1\right)x-y=\sqrt{2}\\\left(\sqrt{2}-1\right)x+y=\sqrt{2}-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{2}-1\right)x-y=\sqrt{2}\\2y=-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=-\frac{1}{2}\\x=\frac{\sqrt{2}-0.5}{\sqrt{2}-1}=\frac{3+\sqrt{2}}{2}\end{cases}}\)
Đặt S = x + y
P = \(x\cdot y\)
\(\hept{\begin{cases}PS=2\\\left(x+y\right)^3-3xy\left(x+y\right)+P^3+7\left(xy+x+y+1\right)=31\end{cases}}\)
\(\hept{\begin{cases}PS=2\\S^3-3PS+P^3+7+7S+7P=31\end{cases}}\)
\(\hept{\begin{cases}PS=2\\S^3-6+P^3+7+7S+7P=31\end{cases}}\)
\(\hept{\begin{cases}P=\frac{2}{S}\\S^3+\left(\frac{2}{S}\right)^3+7S+7\cdot\frac{2}{S}=30\end{cases}}\) Giải vế dưới trước cho gọn
\(S^3+\frac{8}{S^3}+7S+\frac{14}{S}=30\)
\(S^6+8+7S^4+14S^2-30S^3=0\)
\(S^6-2S^5+2S^5-4S^4+11S^4-22S^3-8S^3+16S^2-2S^2+4S-4S+8=0\)
\(\left(S-2\right)\left(S^5+2S^4+11S^3-8S^2-2S-4\right)=0\)
\(\left(S-2\right)\left(S^5-S^4+3S^4-3S^3+14S^3-14S^2+6S^2-6S+4S-4\right)=0\)
\(\left(S-2\right)\left(S-1\right)\left(S^4+3S^3+14S^2+6S+4\right)=0\)
\(\orbr{\begin{cases}S-2=0\\S-1=0\end{cases}}\)
\(\orbr{\begin{cases}S=2\\S=1\end{cases}}\) \(\Rightarrow\orbr{\begin{cases}P=\frac{2}{S}=\frac{2}{2}=1\\P=\frac{2}{S}=\frac{2}{1}=2\end{cases}}\)
TH1 :
\(\hept{\begin{cases}S=x+y=2\\P=x\cdot y=1\end{cases}}\)
\(X^2-SX+P=0\)
\(X^2-2X+1=0\)
\(X=1\)
Vậy x = y = 1
TH2 :
\(\hept{\begin{cases}S=x+y=1\\P=x\cdot y=2\end{cases}}\)
\(X^2-SX+P=0\)
\(X^2-X+2=0\) ( phương trình vô nghiệm )
Vậy x = y = 1 là nghiệm của hệ phương trình
Do: \(xy\left(x+y\right)=2\left(gt\right)\)
=> \(3xy\left(x+y\right)=6\)
=> \(3xy\left(x+y\right)\left(x+1\right)\left(y+1\right)=6\left(x+1\right)\left(y+1\right)\)
=> \(3\left(x+y\right)\left(xy+y\right)\left(xy+x\right)=6\left(x+1\right)\left(y+1\right)\) (3)
pt (2) <=> \(x^3+y^3+x^3y^3+6\left(x+1\right)\left(y+1\right)+\left(x+1\right)\left(y+1\right)=31\) (4)
TỪ (3) THAY VÀO (4) TA ĐƯỢC:
=> \(x^3+y^3+x^3y^3+3\left(x+y\right)\left(xy+x\right)\left(xy+y\right)+\left(x+1\right)\left(y+1\right)=31\)
<=> \(\left(x+y+xy\right)^3+x+y+xy+1=31\)
<=> \(\left(xy+x+y\right)^3+xy+x+y=30\)
<=> \(xy+x+y=3\)
CÓ: \(xy\left(x+y\right)=2\)
ĐẶT: \(\hept{\begin{cases}xy=a\\x+y=b\end{cases}}\)
=> TA ĐƯỢC: \(\hept{\begin{cases}a+b=3\\ab=2\end{cases}}\)
TỪ ĐÂY TA DỄ DÀNG GIẢI ĐƯỢC \(\hept{\begin{cases}a=2\\b=1\end{cases}}\) HOẶC \(\hept{\begin{cases}a=1\\b=2\end{cases}}\)
NHƯNG DO: \(b^2\ge4a\left(đk\right)\)
=> \(\hept{\begin{cases}a=1\\b=2\end{cases}}\) là nghiệm duy nhất
=> \(\hept{\begin{cases}xy=1\\x+y=2\end{cases}}\)
=> \(x=y=1\)
VẬY TẬP HỢP NGHIỆM CỦA HPT LÀ: \(x=y=1\)
cộng 2 vế là ra mà ta sẽ đc 5|x|=12
PT 2 là 3|x|-y=5 b oi mih viết sai đề bài