Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\left\{{}\begin{matrix}x+y+xy=3\\xy\left(x+y\right)=2\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x+y=a\\xy=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=3\\ab=2\end{matrix}\right.\)
\(\Rightarrow\) Theo Viet đảo, a và b là nghiệm của: \(t^2-3t+2=0\Rightarrow\left[{}\begin{matrix}t=1\\t=2\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}x+y=1\\xy=2\end{matrix}\right.\) theo Viet đảo, x và y là nghiệm của:
\(t^2-t+2=0\) (vô nghiệm)
TH2: x và y là nghiệm của: \(t^2-2t+1=0\Rightarrow t=1\Rightarrow x=y=1\)
b/ \(\left\{{}\begin{matrix}\left(x+y\right)^2-2xy=2xy+4\\x+y=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x+y=6\\xy=8\end{matrix}\right.\)
Theo Viet đảo, x và y là nghiệm: \(t^2-6t+8=0\Rightarrow\left[{}\begin{matrix}t=2\\t=4\end{matrix}\right.\)
\(\Rightarrow\left(x;y\right)=\left(4;2\right);\left(2;4\right)\)
c/ Trừ vế với vế:
\(x^2-y^2-2x+2y=y-x\)
\(\Leftrightarrow\left(x+y\right)\left(x-y\right)-3\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+y-3\right)=0\Rightarrow\left[{}\begin{matrix}y=x\\y=3-x\end{matrix}\right.\)
Thay vào pt đầu:
\(\left[{}\begin{matrix}x^2-2x=x\\x^2-2x=3-x\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x\left(x-3\right)=0\\x^2-x-3=0\end{matrix}\right.\) \(\Rightarrow...\)
d/ Sao có t từ đâu vào đây thế này? :(
e/ \(\Leftrightarrow\left\{{}\begin{matrix}4x^2-2y^2=2\\xy+x^2=2\end{matrix}\right.\) \(\Rightarrow3x^2-xy-2y^2=0\)
\(\Rightarrow\left(x-y\right)\left(3x+2y\right)=0\) \(\Rightarrow\left[{}\begin{matrix}y=x\\y=-\frac{3}{2}x\end{matrix}\right.\)
Thay vào pt đầu: \(\left[{}\begin{matrix}2x^2-x^2=1\\2x^2-\left(-\frac{3}{2}x\right)^2=1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2=1\\x^2=-4\left(vn\right)\end{matrix}\right.\)
\(\Rightarrow\left(x;y\right)=\left(1;1\right);\left(-1;-1\right)\)
mấy bài dạng như này mk sẽ hướng dẩn nha .
a) ta có : \(\left\{{}\begin{matrix}\left(x+y-2\right)\left(2x-y\right)=0\\x^2+y^2=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x+y-2=0\\2x-y=0\end{matrix}\right.\\x^2+y^2=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+y-2=0\\x^2+y^2=2\end{matrix}\right.\\\left\{{}\begin{matrix}2x-y=0\\x^2+y^2=0\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\) giải bằng cách thế bình thường nha
b) ta có : \(\left\{{}\begin{matrix}x^2+y^2+2x+2y=6\\x+y-3xy+1=0\end{matrix}\right.\) \(\Leftrightarrow2x^2+2y^2+6xy-5=0\)
\(\Leftrightarrow2\left(x+y\right)^2+2xy-5=0\) sài vi ét --> .......................
c) đây là phương trình đối xứng loại 1 , có trên mang nha .
câu d và e là phương trình đối xứng loại 2 , cũng có trên mạng nha .
b: =>x^2-y^2-4y-2x-3=0 và x^2+2x+y=0
=>x^2-2x+1-y^2-4y-4=0 và x^2+2x+y=0
=>x=1 và y=-2 và x^2+2x+y=0
=>Hệ vô nghiệm
a: \(\Leftrightarrow\left\{{}\begin{matrix}z=2x-5\\y=3-2x+z=3-2x+2x-5=-2\\3x-2\cdot\left(-2\right)+2x-5=14\end{matrix}\right.\)
=>y=-2; 3x+4+2x-5=14; z=2x-5
=>y=-2; x=3; z=2*3-5=1
Câu a: Thế y=5-2x rồi giải pt bậc2
Câu b : từ pt thứ 2, tương đương (x-3)(y-3)=0, xét 2 TH rồi thế vào pt thứ 1
Câu c: từ pt 1 suy ra 2x = 2-3y
Nhân 2 vào pt 2 rồi thế vào
b) Lấy pt đầu trừ pt dưới thu được:
\(x^3-y^3+2\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2+2\right)=0\)
Do \(x^2+xy+y^2=\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}+2>0\)
Do đó x = y. Thay vào pt đầu thu được:
\(x^3-2x-1=0\Leftrightarrow\left(x+1\right)\left(x^2-x-1\right)=0\)
c) Lấy pt trên trừ pt dưới:
\(2\left(x^2-y^2\right)-3\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(2x+2y-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=y\\2x+2y-3=0\end{matrix}\right.\)
Auto làm nốt:D
P/s: Is that true?