\(\left\{{}\begin{matrix}\sqrt{x+y}+\sqrt{x-y}=4\\x^2+y^2=128\end{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2018

\(\left\{{}\begin{matrix}\sqrt{x+y}+\sqrt{x-y}=4\left(1\right)\\x^2+y^2=128\left(2\right)\end{matrix}\right.\)

\(\left(2\right)\Leftrightarrow x^2+y^2=128\)

\(\Leftrightarrow2x^2+2y^2=256\)

\(\Leftrightarrow x^2+2xy+y^2+x^2-2xy+y^2=256\)

\(\Leftrightarrow\left(x+y\right)^2+\left(x-y\right)^2=256\)

Hệ phương trình tương đương:

\(\left\{{}\begin{matrix}\sqrt{x+y}+\sqrt{x-y}=4\\\left(x+y\right)^2+\left(x-y\right)^2=256\end{matrix}\right.\)(*)

Đặt \(\sqrt{x+y}=a;\sqrt{x-y}=b\), (*) trở thành:

\(\left\{{}\begin{matrix}a+b=4\\a^4+b^4=256\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=4\\\left(a^2+b^2\right)^2-2\left(ab\right)^2=256\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=4\\\left[\left(a+b\right)^2-2ab\right]^2-2\left(ab\right)^2=256\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=4\\\left(16-2ab\right)^2-2\left(ab\right)^2=256\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=4\\256-64ab+4\left(ab\right)^2-2\left(ab\right)^2=256\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=4\\2\left(ab\right)^2-64ab=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=4\\2ab\left(ab-32\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=4\\\left[{}\begin{matrix}ab=0\\ab=32\end{matrix}\right.\end{matrix}\right.\)

Tới đây Vieta đảo làm tới thôi :)

NV
10 tháng 7 2019

a/ Bạn tự giải

b/ ĐKXĐ:...

Cộng vế với vế: \(\frac{x-y}{y+12}=3\Rightarrow x-y=3y+36\Rightarrow x=4y+36\)

Thay vào pt đầu: \(\frac{4y+36}{y}-\frac{y}{y+12}=1\)
Đặt \(\frac{y+12}{y}=a\Rightarrow4a-\frac{1}{a}=1\Rightarrow4a^2-a-1=0\)

\(\Rightarrow a=\frac{1\pm\sqrt{17}}{8}\) \(\Rightarrow\frac{y+12}{y}=\frac{1\pm\sqrt{17}}{8}\)

\(\Rightarrow\left[{}\begin{matrix}y+12=y\left(\frac{1+\sqrt{17}}{8}\right)\\y+12=y\left(\frac{1-\sqrt{17}}{8}\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left(\frac{-7+\sqrt{17}}{8}\right)y=12\\\left(\frac{-7-\sqrt{17}}{8}\right)y=12\end{matrix}\right.\) \(\Rightarrow y=...\)

Chắc bạn ghi sai đề, nghiệm quá xấu

3/ \(\Leftrightarrow\left\{{}\begin{matrix}3x^2+y^2=5\\3x^2-9y=3\end{matrix}\right.\) \(\Rightarrow y^2+9y=2\Rightarrow y^2+9y-2=0\Rightarrow y=...\)

4/ ĐKXĐ:...

\(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{3x-1}-3\sqrt{2y+1}=3\\2\sqrt{3x-1}+3\sqrt{2y+1}=12\end{matrix}\right.\)

\(\Rightarrow5\sqrt{3x-1}=15\Rightarrow\sqrt{3x-1}=3\Rightarrow x=\frac{10}{3}\)

\(\sqrt{2y+1}=\sqrt{3x-1}-1=3-1=2\Rightarrow2y+1=4\Rightarrow y=\frac{3}{2}\)

30 tháng 11 2020

hello bạn

AH
Akai Haruma
Giáo viên
26 tháng 6 2019

Bài 1:

ĐK:...........

PT\((1)\Rightarrow x+y+2\sqrt{(x+y)(x-y)}+x-y=16\) (bình phương 2 vế)

\(\Leftrightarrow x+\sqrt{x^2-y^2}=8\)

\(\Leftrightarrow \sqrt{x^2-y^2}=8-x\Rightarrow \left\{\begin{matrix} 8-x\geq 0\\ x^2-y^2=(8-x)^2=x^2-16x+64\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} x\leq 8\\ y^2=16x-64\end{matrix}\right.\)

Thay vào PT(2) ta có:

\(x^2+16x-64=128\)

\(\Leftrightarrow x^2+16x-192=0\Rightarrow \left[\begin{matrix} x=8\\ x=-24\end{matrix}\right.\)

Nếu \(x=8\Rightarrow y^2=16x-64=64\Rightarrow y=\pm 8\) (thỏa mãn)

Nếu $x=-24\Rightarrow y^2=16x-64< 0$ (vô lý-loại)

Vậy $(x,y)=(8,\pm 8)$

AH
Akai Haruma
Giáo viên
26 tháng 6 2019

Bài 2:

Ta thấy:

\(x^2-4x+11=(x^2-4x+4)+7=(x-2)^2+7\geq 0, \forall x\)

\(x^4-8x^2+21=(x^4-8x^2+16)+5=(x^2-4)^2+5\geq 5, \forall x\)

Do đó:

\((x^2-4x+11)(x^4-8x^2+21)\geq 7.5=35\)

Dấu "=" xảy ra khi \((x-2)^2=(x^2-4)^2=0\Leftrightarrow x=2\)

Vậy.......

24 tháng 2 2018

Câu 1 \(\left\{{}\begin{matrix}2x+2y+2xy=10\left(1\right)\\x^2+y^2=5\left(2\right)\end{matrix}\right.\)

=>2.(2) - (1)=\(\left(x-1\right)^2+\left(y-1\right)^2+\left(x-y\right)^2=0\)

<=>\(\left\{{}\begin{matrix}x-1=0\\y-1=0\\x-y=0\end{matrix}\right.\) =>x=y=1

Câu 2 dùng vi-et đảo

Câu 3 rút x=y+1 từ pt trên rồi thế xuống dưới

Câu 4 lấy pt trên cộng pt dưới rồi xét dấu GTTĐ

25 tháng 4 2017

a. ĐK: \(x\ge1;y\ge1\)

Đặt \(\sqrt{x-1}=a\left(a\ge0\right)\)\(\sqrt{y-1}=b\left(b\ge0\right)\)

Khí đó hệ phương trình trở thành:

\(\left\{{}\begin{matrix}2a-b=1\\a+b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=2a-1\\a+2a-1=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}b=2.1-1\\a=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=1\\a=1\end{matrix}\right.\)(tm)

* a = 1 \(\Leftrightarrow\sqrt{x-1}=1\Leftrightarrow x-1=1\Leftrightarrow x=2\)(tmđk)

* b = 1 \(\sqrt{y-1}=1\Leftrightarrow y-1=1\Leftrightarrow y=2\) (tmđk)

Vậy nghiệm của hệ phương trình là (2;2)

25 tháng 4 2017

b. Đặt \(\left(x-1\right)^2=a\) ( a \(\ge\) 0)

Khi đó hệ phương trình đã cho trở thành :

\(\left\{{}\begin{matrix}a-2y=2\\3a+3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2+2y\\3\left(2+2y\right)+3y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=2+2.\left(-\dfrac{5}{9}\right)\\y=-\dfrac{5}{9}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{8}{9}\\y=-\dfrac{5}{9}\end{matrix}\right.\)(tmđk)

* a = \(\dfrac{8}{9}\Leftrightarrow\) \(\left(x-1\right)^2=\dfrac{8}{9}=\left(\pm\dfrac{2\sqrt{2}}{3}\right)^2\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2\sqrt{2}}{3}+1\\x=-\dfrac{2\sqrt{2}}{3}+1\end{matrix}\right.\)

Vậy nghiệm của hệ phương trình là \(\left(\dfrac{2\sqrt{2}}{3};-\dfrac{5}{9}\right);\left(\dfrac{-2\sqrt{2}}{3};-\dfrac{5}{9}\right)\)

AH
Akai Haruma
Giáo viên
29 tháng 11 2019

Lời giải:

a)

HPT \(\Leftrightarrow \left\{\begin{matrix} 5x-y=4(1)\\ 3x-y=5(2)\end{matrix}\right.\)

Lấy $(1)$ trừ $(2)$:

$\Rightarrow 2x=-1\Rightarrow x=-\frac{1}{2}$

Thay $x=\frac{-1}{2}$ vào $(1):y=5x-4=5.\frac{-1}{2}-4=\frac{-13}{2}$

Vậy HPT có nghiệm $(x,y)=(\frac{-1}{2}, \frac{-13}{2})$

b)

\(\left\{\begin{matrix} \sqrt{3}x-\sqrt{2}y=1\\ \sqrt{2}x+\sqrt{3}y=\sqrt{3}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} \sqrt{6}x-2y=\sqrt{2}(1)\\ \sqrt{6}x+3y=3(2)\end{matrix}\right.\)

Lấy $(2)-(1)$ thu được:

$5y=3-\sqrt{2}\Rightarrow y=\frac{3-\sqrt{2}}{5}$

Thay giá trị $y$ trên vào $(1): x=\frac{2y+\sqrt{2}}{\sqrt{6}}=\frac{\sqrt{6}+\sqrt{3}}{5}$

Vậy.........